Please wait a minute...
上海交通大学学报(自然版)
0
  工程力学 本期目录 | 过刊浏览 | 高级检索 |
基于小波分析的湍流采样数据量缩减算法
张斌1,王彤1,谷传纲1,戴正元2
(1. 上海交通大学 动力机械及工程教育部重点实验室,上海 200240;
2. 特灵空调亚太研发中心,上海 200001)
Algorithm of Reducing the Sample Size of Turbulent Experiment Based on Wavelet Analysis
ZHANG Bin1,WANG Tong1,GU Chuan-gang1,DAI Zheng-yuan2
(1. Key Laboratory for Power Machinery and Engineering (the Ministry of Education), Shanghai Jiaotong
University, Shanghai, 200240, China; 2. Trane’s AsiaPacific Research Center, Shanghai 200001, China)
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 根据缩减数据必须反映与原数据统计同等的湍流流动信息准则,利用小波分析良好的时频双局域性信号处理特点,结合统计检测理论提出了一种相对合理的湍流采样数据量缩减算法.与传统算法及已有算法比较,由该算法缩减所得的数据量稍大但更能合理反映与原数据统计同等的湍流流动信息.选取湍动能为统计特征量,对沟槽壁面减阻机制实验数据进行了缩减分析,结果验证了该数据缩减算法的合理性和可靠性.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract Based on the statistic detecting methods, a reasonable algorithm was put forward to reduce the sample size of turbulent experiment. Wavelet analysis method was adopted in the algorithm to get the characteristic parameters of turbulent flow in both time domain and frequency domain. Comparing with the former algorithms, the reduced data size by the algorithm is larger, but it includes the same information with the initial sample data statistically. An example was provided to prove the reliability and rationality of the algorithm, where the sample data is from the experiment on the mechanism of riblets drag reduction and the turbulent kinetic energy is selected as the statistic characteristic parameter.
收稿日期: 2008-01-09      出版日期: 2008-11-28
ZTFLH:  O 357.5  
通讯作者: 王彤   
引用本文:   
张斌,王彤,谷传纲,戴正元. 基于小波分析的湍流采样数据量缩减算法[J]. 上海交通大学学报(自然版), .
ZHANG Bin1,WANG Tong1,GU Chuan-gang1,DAI Zheng-yuan2. Algorithm of Reducing the Sample Size of Turbulent Experiment Based on Wavelet Analysis. J. Shanghai Jiaotong Univ.(Sci.) , 2008, 42(11): 1896-1899.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtunc/CN/      或      http://www.qk.sjtu.edu.cn/jsjtunc/CN/Y2008/V42/I11/1896
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed