Please wait a minute...
上海交通大学学报(自然版)
0
  数理科学和化学 本期目录 | 过刊浏览 | 高级检索 |
平板流固耦合振动的数值分析
胡世良a,鲁传敬a,b,何友声a,b
(上海交通大学 a.工程力学系; b.水动力学教育部重点实验室, 上海 200240)
 
Numerical Analysis of Fluid-structure Interaction Vibration for Plate
HU Shilianga,LU Chuanjinga,b,HE Youshenga,b
 (a.Department of Engineering Mechanics; b.MOE Key Laboratory of Hydrodynamics,  Shanghai Jiaotong University, Shanghai 200240, China)
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 
采用了一种基于紧耦合的流固耦合算法,对流场与柔性平板之间的耦合运动进行了数值模拟.流场部分通过有限体积法求解任意拉格朗日欧拉描述下的不可压缩N-S方程,而结构则由有限元法离散求解拉格朗日坐标下的弹性动力学方程.在一个时间步内,流场与结构计算区域的交界面上进行多次的数据传递和插值,以保证满足耦合面边界条件.计算了在静止流场中弹性板的自由振动和方柱后部平板的涡激振动现象,监测了平板的振幅和频率以及水动力载荷.通过与前人结果的比较,验证了所采用的流固耦合算法的可靠性.同时,分析了不同的材料参数对于平板耦合运动的影响.流体黏性越大对平板振动的阻尼作用越明显,而流体密度的增加会加速振动的衰减,并降低振动的频率.对于具有较低固有频率的结构,在耦合运动中的振动幅度和频率也较小.

 
 
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract
A numerical approach of a fluidstructure coupling with closely coupled algorithm was used to simulate the coupling motion between the fluid and the flexible plate. The fluid, which was modeled by the Arbitrary Lagrangian-Eulerian (ALE) formulation of the incompressible Navier-Stokes equations, was simulated by the finite volume method. The structure was described by the equation of the elastodynamics in Lagrangian representation, and was simulated using finite element approach. In order to satisfy the coupling interfacial boundary condition, the date transfer and interpolation was performed via the interface of the fluid and structure several times within one time step. The free oscillation of elastic plane in resting fluid and the VIV of flat plane behind the square head was calculated, and the amplitude and frequency of the plate vibration and the hydrodynamic load on the plate were monitored. The validity of the coupling method used in this paper was verified by comparing it with the previous work. Meanwhile, the influence of material parameters on fluidstructure interaction motion was analyzed. It was noted that larger viscosity of fluid damps had a more significant influence on the vibration amplitude of the plate more obviously. And with the increase of fluid density, the attenuation velocity of the vibration increased, while the frequency decreased. When the structure had low natural frequency, the amplitude and frequency of the coupling motion would also be small.
 
收稿日期: 2013-03-26      出版日期: 2013-10-30
ZTFLH:  O 351.2  
基金资助:

国家自然科学基金(10832007)资助项目,上海市重点学科(B206)资助项目

引用本文:   
胡世良a,鲁传敬a,b,何友声a,b. 平板流固耦合振动的数值分析[J]. 上海交通大学学报(自然版), .
HU Shilianga,LU Chuanjinga,b,HE Youshenga,b. Numerical Analysis of Fluid-structure Interaction Vibration for Plate. J. Shanghai Jiaotong Univ.(Sci.) , 2013, 47(10): 1487-1493.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtunc/CN/      或      http://www.qk.sjtu.edu.cn/jsjtunc/CN/Y2013/V47/I10/1487
[1]Nunes R, Friswell M. Effect of fluid/structure coupling on unsteady mechanisms in solid rocket motor[J]. AIAA, 2011, 27: 437447.

[2]Keye S. Fluidstructure coupled analysis of a transport aircraft and flighttest validation[J]. AIAA, 2011, 48: 381390.

[3]叶永林, 吴有生, 田超, 等. 水弹性力学在SWATH船体结构振动响应分析中的应用研究[J]. 船舶力学, 2011, 15(5): 513520.

YE Yonglin, WU Yousheng, TIAN Chao, et al. Research on application of hydroelasticity method to vibration response analysis of the SWATH ship hull[J]. J Ship Mech., 2011, 15(5): 513520.

[4]Paik K J, Carrica P M, Lee D, et al. Strongly coupled fluidstructure interaction method for structural loads on surface ship[J]. Ocean Eng, 2009, 36(1718): 13461357.

[5]Gluck M, Breuer M, Durst F, et al. Computation of fluid–structure interaction on lightweight structures[J]. J Wind Eng Ind Aerodyn, 2001, 89(1415): 13511368.

[6]Michalski A, Kermel P D, Haug E, et al. Validation of the computational fluidstructure interaction simulation at realscale tests of a flexible 29m umbrella in natural wind flow[J]. J Wind Eng Ind Aerodyn, 2011, 99(4): 400413.

[7]GONG Zhaoxin, LU Chuanjing. Effect of elastic constitutive twodimensional laws on the deformation of red blood cell [J]. J Shanghai Jiaotong Univ (Sci), 2009, 14(1): 7680.


[8]Vierendeels J, Dumontt K, Verdonck P R. A partitioned strongly coupled fluidstructure interaction methods to model


[9]Gene H, Jin W, Anita L. Numerical method for fluidstructure interaction—A review[J].

Commun Comput Phys, 2012, 1(2): 337377.


[10]Schafer F, Muller S, Uffinger T, et al. Fluidstructureacoustics interaction of the flow past a thin flexible structure[J]. AIAA, 2010, 48: 738748.




[11]王文全,张立翔,闫妍,等. 方柱绕流诱发的弹性薄板流固耦合特性研究[J]. 工程力学, 2011, 28(3): 1722.

WANG Wenquan, ZHANG Lixiang, YAN Yan, et al. Numerical investigation of fluidstructure interaction of thin elastic plate in wake flowing fields[J]. Eng Mech, 28(3): 1722.

[12]Jansen K, Shakib F, Hughes T. Computational nonlinear mechanics in aerospace engineering[M]. USA: AIAA, 1992:175203.

[13]Blevins R D. Formulas for natural frequency and mode shape[M]. USA : Krieger Publishing Company, 1979.

[14]Dettmer W, Peric D. A computational framework for fluidstructure interaction: Finite element formulation and applications[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(4143): 57545779.

[15]Wang W Q, Yan Y. Strongly coupling of partitioned fluidsoild interaction solvers using reducedorder models[J].

[1] 霍岩,邹高万,李树声,郜冶. 有侧开缝的竖直通道内旋转火焰高度特性[J]. 上海交通大学学报(自然版), 2014, 48(06): 767-771.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed