Please wait a minute...
上海交通大学学报(自然版)
0
  数理科学和化学 本期目录 | 过刊浏览 | 高级检索 |
低温管路中Taylor气泡形成位置预测公式
刘亦鹏1,王平阳1,蔺帅南1,赵先林2,杜朝辉1
 (1.上海交通大学 机械与动力工程学院,上海 200240; 2.河南教育学院 物理系,郑州 450046)
 
Correlation of Position of Taylor Bubble Formation in Cryogenic Tube
LIU Yipeng1,WANG Pingyang1,LIN Shuainan1,ZHAO Xianlin2,DU Zhaohui1
(1. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China;2. Department of Physics, Henan Institute of Education, Zhengzhou 450046, China)
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 
使用粒子图像测速技术(PIV)和高速摄像技术对低温管路中由漏热产生的Taylor气泡形成过程进行了实验研究.将传统的流型转变理论和实验获得的流场结构相结合,建立了低温管路中Taylor气泡形成位置的预测公式,考虑了湍流强度、漏热、气泡上升速度和管路倾角等众多因素的影响.公式适用范围较广,其计算值与文中实验结果最大误差不超过±7.9%,与文献结果的最大误差也在±20%以内.
 
 
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract
The formation process of Taylor bubble caused by the heat leak in cryogenic tubes was investigated using the particle image velocimetry (PIV) technique and high speed camera. A correlation for Taylor bubble formation was developed with the consideration of turbulence suppression, tube inner diameter, fluid properties and inclination angle, etc. The predicted value of the position of Taylor bubble formation has a maximum error of ±7.9% compared with the experimental data in present study, and a maximum error of ±20% compared with the experimental data from the reference.
收稿日期: 2012-11-26      出版日期: 2013-10-30
ZTFLH:  O 359.1  
基金资助:

2012年河南省基础与前沿技术研究计划项目(122300410332),2011年上海交通大学研究生创新能力培养基金资助

引用本文:   
刘亦鹏1,王平阳1,蔺帅南1,赵先林2,杜朝辉1. 低温管路中Taylor气泡形成位置预测公式[J]. 上海交通大学学报(自然版), .
LIU Yipeng1,WANG Pingyang1,LIN Shuainan1,ZHAO Xianlin2,DU Zhaohui1. Correlation of Position of Taylor Bubble Formation in Cryogenic Tube. J. Shanghai Jiaotong Univ.(Sci.) , 2013, 47(10): 1509-1514.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtunc/CN/      或      http://www.qk.sjtu.edu.cn/jsjtunc/CN/Y2013/V47/I10/1509
 [1]张亮, 林文胜, 鲁雪生, 等.低温输送系统间歇泉现象实验研究[J]. 上海交通大学学报, 2005, 39(2):238241.
ZHANG Liang, LIN Wensheng, LU Xuesheng, et al. Geysering research in cryogenic transfer system [J]. Journal of Shanghai Jiaotong University, 2005, 39(2): 238241.

[2]唐虎, 张敏贵, 张金容, 等. 液体火箭发动机汽蚀管堵塞仿真研究[J]. 火箭推进, 2012, 38(3): 4648.

TANG Hu, ZHANG Mingui, ZHANG Jingrong, et al. Simulation study on jamming of liquid rocket engine venture[J]. Journal of Rocket Propulsion, 2012, 38(3): 4648.

[3]廖少英. 低温推进剂火箭喷泉效应及其抑制[J]. 上海航天, 2002, 19(3): 2934.

LIAO Shaoying. Geysering effect of the cryogenic propellant rocket and restraint research [J]. Aerospace Shanghai, 2002, 19(3): 2934.

[4]Hands B A. Problems due to superheating of cryogenic liquids [J]. Cryogenics, 1988, 28: 823829.

[5]祝银海, 姜培学, 杨炜平, 等. 液体火箭发动机液氧箱与预冷回路的耦合计算模型[J]. 工程热物理学报, 2012, 33(5): 835838.

ZHU Yinhai, JIANG Peixue, YANG Weiping, et al. Numerical investigation of transpiration cooling coupled with combustion in the thrust chamber of liquid rocket [J]. Journal of Engineering Thermophysics, 2012, 33(5): 835838.

[6]段娜, 朱子环, 于海磊, 等. 基于工作流的液体火箭发动机虚拟试验流程管理[J]. 火箭推进, 2012, 38(3): 7479.

DUAN Na, ZHU Zihuan, YU Hailei, et al. Workflowbased process management in virtual test of liquid rocket engine [J]. Journal of Rocket Propulsion, 2012, 38(3): 7479.

[7]Murphy D W. An experimental investigation of geysering in vertical tubes [J]. Advances in Cryogenic Engineering, 1965, 10: 353359.

[8]Burkhalter J E, Richard H S. Investigations of geysering in vertical tubes [J]. Journal of Spacecraft and Rockets, 1968, 5(7): 854857.

[9]Kuncoro H, Rao Y F, Fukuda K. An experimental study on the mechanism of geysering in a closed twophase thermosyphon [J]. International Journal of Multiphase Flow, 1995, 21(6): 12431252.

[10]张华. 垂直管道低温汽液两相流动弹状流流型及动态特性的研究[D]. 上海:上海交通大学机械与动力工程学院, 2009.

[11]胡学羽, 刘亦鹏, 王平阳, 等. 倾斜管中低温气液两相流弹状气泡生成位置的实验研究[J]. 上海交通大学学报, 2012, 46(2): 306311.

HU Xueyu, LIU Yipeng, WANG Pingyang, et al. Experimental study on initial position of Taylor bubbles of cryogenic twophase slug flow in inclined pipes [J]. Journal of Shanghai Jiaotong University, 2012, 46(2): 306311.

[12]马昕晖, 徐腊萍, 陈景鹏, 等. 液氢加注系统竖直管道内Taylor气泡的行为特性[J]. 低温工程, 2011(6): 6670.

MA Xinhui, XU Laping, CHEN Jingpeng, et al. Research on Taylor bubble’s behavior in vertical tube of liquid hydrogen loading system [J]. Cryogenics, 2011(6): 6670.

[13]孙宝江, 颜大椿. 垂直气液两相管流中的流型转换机制与控制[J]. 北京大学学报(自然科学版), 2000, 36(3): 381387.

SUN Baojiang, YAN Dachun. The transition mechanism of the flow regimes and its control of gasliquid twophase flow in vertical pipes [J]. ACTA Scientiarum Naturalium Universitatis Pekinensis, 2000, 36(3): 381387.

[14]Liu Y P, Wang P Y, Hu X Y, et al. Visualization research on characteristics of the cryogenic slug flow in vertical and inclined tubes [J]. Canadian Journal of Chemical Engineering, 2011, 90(16): 15881601.

[15]严敬, 杨小林, 邓万权, 等. 示踪粒子跟随性讨论[J]. 农业机械学报, 2005, 30(6): 5456.

YAN Jing, YANG Xiaolin, DENG Wanquan, et al. Analysis on following features of tracer particles [J]. Transactions of the Chinese Society of Agricultural Machinery, 2005, 30(6): 5456.

[16]阮驰, 孙传东, 白永林, 等. 水流场PIV测试系统示踪粒子特性研究[J]. 实验流体力学, 2006, 20(2): 7277.

RUAN Chi, SUN Chuandong, BAI Yonglin, et al. The characteristics of the tracer particles used in water flow field for PIV system [J]. Journal of Experiments in Fluid Mechanics, 2006, 20(2): 7277.

[17]刘亦鹏,胡学羽,陈佳洛, 等. 圆形截面管路内PIV流场测量的直接校正方法[J]. 上海交通大学学报,2013,47(4): 525532.

LIU Yipeng, HU Xueyu, CHEN Jialuo, et al. Direct image correction algorithm for PIV measurement of flowfield within circular tube[J]. Journal of Shanghai Jiaotong University, 2013,47(4): 525532.

[18]何鸿辉, 刘国青, 刘波涛, 等. 垂直上升管内气液两相泡状流的存在条件[J]. 航天器环境工程, 2005, 22(5):268272.

HE Honghiu, LIU Guoqing, LIU Botao, et al. Bubble flow region existence conditions for upward gasliquid twophase flow [J]. Spacecraft Environment Engineering, 2005, 22(5):268272.

[19]赵建福. 气泡初始尺寸对泡弹状流型转换的影响[J]. 工程热物理学报, 2005, 26(5): 793795.


ZHAO Jiangfu. Influence of bubble initial size on bubbletoslug transition [J]. Journal of Engineering Thermophysics, 2005, 26(5): 793795.


[20]Taitel Y, Barnea D, Duckler A E. Modeling flow pattern transitions for steady upward gasliquid flow in vertical tubes[J].AICHE J,1980, 26(3): 345354.


[21]Harmathy T Z. Velocity of large drops and bubbles in media of infinite or restricted extent [J]. AICHE J, 1960, 6(2): 281288.

[22]Thomas R M. Bubble coalescence in turbulent flows [J]. International Journal of Multiphase Flow, 1981, 7(6): 709717.

[23]Campos J B L M, Guedes De Carvalho J R F. An experimental study of the wake of gas slugs rising in liquids [J]. Journal of Fluid Mechanics, 1988, 196: 2737.

[24]Bonnecaze R H, Erksne Jr W, Greskovich E J. Holdup and pressure drop for twophase slug flow in inclined pipes [J]. AICHE J, 1971, 17(5): 11091113.



 


[1] 傅慧萍a,b,李杰b. 微气泡减阻的数值模拟方法及尺寸效应[J]. 上海交通大学学报(自然版), 2016, 50(02): 278-282.
[2] 张永涛1,傅慧萍2,杨炎华1. 波流及自由面对跨海桥隧预制结构水动力性能影响的数值分析[J]. 上海交通大学学报(自然版), 2013, 47(10): 1525-1531.
[3] 傅慧萍. 基于相群平衡模型的舰船气泡尾流数值模拟[J]. 上海交通大学学报(自然版), 2013, 47(04): 538-543.
[4] 刘亦鹏, 胡学羽, 陈佳洛, 王平阳, 杜朝辉. 圆形截面管路内PIV流场测量的直接校正方法[J]. 上海交通大学学报(自然版), 2013, 47(04): 525-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed