Please wait a minute...
上海交通大学学报(自然版)
0
  数理科学和化学 本期目录 | 过刊浏览 | 高级检索 |
微通道中细胞平动对其周围化学微环境的影响
季丽娜,胡延东,李沛晔
(1.上海交通大学 船舶海洋与建筑工程学院,上海 200240)
Influence of Cell Movement on Its Chemical Environment in Microchannels
JI Lina,HU Yandong,LI Peiye
 (1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China)
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 
主要通过数值模拟研究运动细胞在直通道中对周围浓度梯度场的影响,及对流传质Peclet数、细胞运动速度、细胞运动方向以及细胞大小对细胞周围浓度场的影响.研究发现,细胞在匀速运动一定距离后其周围的最大浓度差的大小和方向与相同位置静止情形下的值的偏差是一个常数,且此常数与传质Peclet数、细胞运动速度及方向、细胞直径等相关.该结论对细胞趋化效应的进一步量化研究具有重要意义.
 

 

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract
The microfluidic technology can produce temporal and spatial stable concentration gradient, which benefits quantitative investigation of living cell chemotaxis. To date, the study of chemotactic effect normally neglected the cell volume and the impact of cell motion. In this paper, the impact of a moving sphere cell on the concentration field was investigated by changing the Peclet number, the velocity of cell and the direction of movements. Results show that the deviation of the maximum concentration difference around a moving cell and a stationary cell at the same spot is close to a constant after a certain time. The maximum concentration difference around a moving cell can be replaced by that of a stationary cell with corrections. This conclusion is valuable to further quantitative chemotactic research.
 
收稿日期: 2013-01-03      出版日期: 2013-10-30
ZTFLH:  O 363  
基金资助:

国家自然科学基金(51206108),国家教育部博士点基金(20120073120016)资助项目

引用本文:   
季丽娜,胡延东,李沛晔. 微通道中细胞平动对其周围化学微环境的影响[J]. 上海交通大学学报(自然版), .
JI Lina,HU Yandong,LI Peiye. Influence of Cell Movement on Its Chemical Environment in Microchannels. J. Shanghai Jiaotong Univ.(Sci.) , 2013, 47(10): 1520-1524.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtunc/CN/      或      http://www.qk.sjtu.edu.cn/jsjtunc/CN/Y2013/V47/I10/1520
[1]Schiffmann E, Gallin J I. Biochemistry of phagocyte chemotaxis [J]. Current Topics in Cellular Regulation, 1979, 15:203261.

[2]Jeon N L, Dertinger S K W, Chiu D T, et al. Generation of solution and surface gradient using microfluidic systems [J]. Langmuir, 2000, 16: 83118316.

[3]Saade W, Wang S J, Lin F, et al. A parallelgradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis [J]. Biomed Microdevices, 2006, 8: 109118.

[4]Hu Y, Lee J S H, Werner C, et al. Electrokinetically controlled concentration gradients in microchambers in microfluidic systems[J]. Microfluid Nanofluid, 2006, 2: 141153.

[5]Beta C, Frhlich T, Bdeker H U, et al. Chemotaxis in microfluidic devicesA study of flow effects [J]. Lab on a Chip, 2008, 8: 10871096.

[6]张述林, 李敏娇, 傅遍红, 等. 层粘连蛋白对肝癌细胞的趋化作用及其伪足形成的影响 [J]. 继续医学教育, 2006, 20(35): 6166.

ZHANG Shulin, LI Minjiao, FU Bianhong, et al. Effect of laminin chemotaxis on chemataxis and pseudopod protrusion of hepatocellular carcinoma cells [J]. Continuing Medical Education, 2006, 20(35):6166.

[7]YE Nannan, QIN Jianhua, SHI Weiwei, et al. Cellbased high content screening using an integrated microfluidic device [J]. Lab on a Chip, 2007, 7: 16961704.

[8]吴望一. 流体力学(下册) [M]. 北京: 北京大学出版社, 2010: 213214.
[1] 李沛晔,都晓慧,胡延东,赵社戌. 微通道中细胞转动对其化学微环境的影响[J]. 上海交通大学学报(自然版), 2016, 50(02): 283-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed