Please wait a minute...
上海交通大学学报(自然版)
0
  建筑科学 本期目录 | 过刊浏览 | 高级检索 |
降雨影响下高边坡渗压神经网络监测模型
黄铭1,刘俊2
(1.合肥工业大学 土木与水利工程学院, 合肥 230009; 2.上海交通大学 船舶海洋与建筑工程学院, 上海 200240)
 
 
Seepage Pressure Neural Network Monitoring Model for  High Slope Considering the effect of Rainfall
HUANG Ming1,LIU Jun2
(1.School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; 2.School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China)
 
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 
为准确揭示高边坡在降雨影响下的渗压变化规律,掌握其安全状态,在降雨作用分析基础上,提出以积分型降雨因子进行边坡渗压分析;以径向基函数(RBF)神经网络为建模工具,构建渗压降雨监测模型结构,并根据高密度采集的实测序列与模糊C均值聚类(FCM)算法进行RBF计算中心的比较选择.应用表明,积分型降雨因子能有效反映降雨的作用,以实测数据建立的渗压监测模型取得了理想效果.
 
 
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract
In order to describe the seepage pressure regular pattern of high slope affected by rainfall, and get to know its safety state, integral rainfall factor was presented into these analysis. The monitoring model frame based on Radial basis function (RBF) artificial neural network was constructed considering the integral rainfall factor. RBF centers were confirmed by the fuzzy cmeans algorithm (FCM) with the observed data. Application shows that the integral rainfall factor can effectively reflect the rainfall effect, and the monitoring model achieve good training and forecasting results.
 
收稿日期: 2012-11-05      出版日期: 2013-10-30
ZTFLH:  TU 454  
引用本文:   
黄铭1,刘俊2. 降雨影响下高边坡渗压神经网络监测模型[J]. 上海交通大学学报(自然版), .
HUANG Ming1,LIU Jun2. Seepage Pressure Neural Network Monitoring Model for  High Slope Considering the effect of Rainfall. J. Shanghai Jiaotong Univ.(Sci.) , 2013, 47(10): 1548-1551.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtunc/CN/      或      http://www.qk.sjtu.edu.cn/jsjtunc/CN/Y2013/V47/I10/1548
[1]黄铭.数学模型与工程安全监测[M].上海:上海交通大学出版社,2008.

[2]黄铭,刘俊,葛修润.边坡开挖期实测位移的分解与合成预测[J]. 岩石力学与工程学报, 2003,22(8):13201323.

HUANG Ming, LIU Jun, GE Xiurun. Predeiction of resolution and composition of measured displacement during slope excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2003,22(8):13201323.

[3]HUANG Ming, LIU Jun. Monitoring and analysis of shanghai pudong seawall performance[J]. Journal of Performance of Constructed Facilities,2009, 23(6): 399405.

[4]KIM Dongwon, HUH Sunghoe, SEO Samjun, et al. Selforganizing radial basis function network modeling for robot manipulator [C] ∥ Lecture Notes in Computer Science. Berlin:Springer, 2005:579587.

[5]HUANG Ming, LIU Jun, WANG Ning. Foundation pit multipoint displacement RBF monitoring model and application key points[C] ∥ MACE2010. Piscataway: IEEE Computer Society, 2010: 45624565.

[6]张秀玲,陈丽杰,季颖, 等. 基于径向基函数神经网络的板形模式识别研究[J]. 工业仪表与自动化装置,2009(3):79.

ZHANG Xiuling, CHEN Lijie, JI Ying, et al. Research on the flatness pattern recognition based on radial basic function network[J]. Industrial Instrumentation & Automation, 2009(3):79.

[7]刘笛,朱学峰,苏彩红. 一种新型的模糊C均值聚类初始化方法[J]. 计算机仿真, 2004,21(11):148151.

LIU Di, ZHU Xuefeng, SU Caihong. A novel initialization method for fuzzy Cmeans algorithm[J]. Computer Simulation, 2004, 21(11):148151.

[8]黄铭,刘俊. 堆载预压作用下路基沉降的多测点监测模型[J].上海交通大学学报, 2011, 45(5):753756.

HUANG Ming, LIU Jun. Multipoint monitoring model on road foundation settlement considering heaping precompaction effect[J]. Journal of Shanghai Jiaotong University, 2011, 45(5):753756.

 
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed