Please wait a minute...
上海交通大学学报(自然版)
0
  自动化技术、计算机技术 本期目录 | 过刊浏览 | 高级检索 |
基于小波神经网络熔丝堆积三维打印精度预测模型
纪良波
(华南理工大学 机械与汽车工程学院, 广州 510641)
Precision Prediction Model in Fused Deposition Modeling of  Three-Dimensional Printing Based on Wavelet Neural Network
JI Liangbo
(School of Mechanical and Automotive Engineering, South China University of Technology,Guangzhou 510641, China)
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

摘要:  熔融沉积快速成形是一个多参数耦合的非线性过程,大量成形参数对成形件精度具有重要影响.为了弄清各个工艺参数对成形零件精度的影响,提高熔丝堆积三维打印产品精度,运用Matlab软件建立了利用成形工艺参数预测产品精度的小波神经网络模型,完成了算法设计.通过熔丝堆积三维打印实验采集样本,利用训练样本对所建立的网络进行训练,完成网络输入输出精度映射关系,并利用测试样本对所训练网络进行检验.仿真试验表明,产品精度预测模型具有很高的精度,验证了该预测模型在理论和实践上的可行性、有效性.把小波神经网络方法运用于熔丝堆积三维打印参数与成形产品精度之间的建模,解决了难以用数学方法建立精确模型的问题.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Abstract: Technological parameters in fused deposition modeling three-dimensional printing are coupled and the forming process is a non-linear forming process. A large number of modeling parameters affect the quality of the product precision in fused deposition modeling of three-dimensional printing. In order to clarify the effects of various parameters on the forming precision and improve the precision of three-dimensional printing, the wavelet neural network prediction model of product precision was build by using the Matlab software. The arithmetic was designed and the samples were acquired by fused deposition modeling experiment. The training samples were used to train the network to accomplish the mapping relation between the input and output of the network. The test samples were used to verify the performance of the trained network. Simulation results indicate that the prediction model has sufficient accuracy. The prediction model of product precision is feasible and valid in theory and in practice. The wavelet neural network method was used to model the relation between the processing parameters and the product precision in fused deposition modeling of threedimensional printing. The difficult problem to create the accurate mathematics model was solved.
 

收稿日期: 2014-06-30      出版日期: 2015-03-30
ZTFLH:     
  TP 183  
  TH 161  
基金资助:

华南理工大学博士后启动项目(X2jqL1130100)资助

引用本文:   
纪良波. 基于小波神经网络熔丝堆积三维打印精度预测模型[J]. 上海交通大学学报(自然版), .
JI Liangbo. Precision Prediction Model in Fused Deposition Modeling of  Three-Dimensional Printing Based on Wavelet Neural Network. J. Shanghai Jiaotong Univ.(Sci.) , 2015, 49(03): 375-378.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtunc/CN/      或      http://www.qk.sjtu.edu.cn/jsjtunc/CN/Y2015/V49/I03/375

[1]余东满, 李晓静, 王笛. 熔融沉积快速成型工艺过程分析及应用[J]. 机械设计与制造,2011(8):65267.

YU Dongman,LI Xiaojing,WANG Di. Process analysis and application for rapid prototyping based on fused deposition modeling [J]. Machinery Design & Manufacture,2011(8):65267.

[2]董海涛. 熔融沉积快速成型的工艺分析[J]. 制造技术与机床,2013(10):9698.

DONG Haitao. Analysis on rapid prototyping of fused deposition modeling [J]. Manufacturing Technology & Machine Tool,2013(10):9698.


[3]刘雪峰, 马胜军, 刘锦平, 等. Cu12 %Al合金高温压缩变形过程本构关系的BP神经网络模型[J]. 材料工程, 2009(1):1014.

LIU Xuefeng, MA Shengjun, LIU Jinping, et al. BP neural networks models for constitutive relationship during high temperature deformation process of Cu12%Al alloy [J]. Journal of Materials Engineering, 2009(1):1014.

[4]姜淑娟, 刘伟军, 南亮亮. 基于神经网络的激光熔覆高度预测[J]. 机械工程学报,2009,45(3):269274.

JIANG Shujuan, LIU Weijun, NAN Liangliang. Laser cladding height prediction based on neural network [J]. Journal of Mechanical Engineering, 2009, 45(3):269274.

[5]姜银方, 王飞, 李新城, 等. 基于正交试验和神经网络的激光拼焊板回弹预测[J]. 塑性工程学报, 2009, 16(3):4044.

JIANG Yinfang, WANG Fei, LI Xincheng, et al. Study on the springback prediction in laser TWBs forming based on orthogonal experiment and neural network [J]. Journal of Plasticity Engineering, 2009, 16(3):4044.

[6]郭奕崇, 刘天青, 郭键, 等. 基于人工神经网络的注塑发泡实验参数分析与预测[J]. 塑料,2013,42(2):104106.

GUO Yichong,LIU Tianqing,GUO Jian, et al. Parameter analyzing and forecasting for injection foaming experiment based on artificial neural network [J]. Plastics, 2013,42(2):104106.

[7]纪良波, 李永志, 陈爱霞. 基于神经网络和遗传算法的塑料热压成形多目标优化[J]. 塑料,2012,41(3):9093.

JI Liangbo, LI Yongzhi, CHEN Aixia. Multiobjective optimization of plastic thermoforming based on neural network and genetic algorithm [J]. Plastics,2012,41(3): 9093.

[8]LI Yao, YU Fan, WU Chen. Application of neural network to downhill shift strategy for automatic transmission [J]. Journal of Shanghai Jiaotong University: Science, 2010,15(4):498503.

[9]郑荣. 三维铝型材挤压模多参数CAO系统研究[D]. 南昌:南昌大学机电工程学院,2005.

[10]肖胜中. 小波神经网络理论与应用[M]. 沈阳:东北大学出版社,2006.

[1] 闫慧, 赵亦希, 于忠奇, 杜引. 2060-T8铝锂合金槽形件的电辅助增量成形[J]. 上海交通大学学报, 2017, 51(5): 513-519.
[2] 顾新建,于忠奇,宋洋. 工艺参数对高强度钢冷冲压界面温度影响分析[J]. 上海交通大学学报(自然版), 2017, 51(4): 426-.
[3] 郑先坤,王武荣,韦习成. 热镀锌先进高强度钢板摩擦耦合塑性变形行为[J]. 上海交通大学学报(自然版), 2017, 51(4): 432-.
[4] 朱梦瑞,吴兆勇,武剑,杜正春,杨建国. 基于误差椭圆理论与蒙特卡罗方法的圆直径测量不确定度评定[J]. 上海交通大学学报(自然版), 2017, 51(4): 393-.
[5] 弓鹏伟1,费燕琼1,3,宋立博2. 基于多传感器信息融合的轮履混合移动机器人路况识别方法[J]. 上海交通大学学报(自然版), 2017, 51(4): 398-.
[6] 霍发力1,张健1,杨德庆2. 工作水深对浮式平台波浪砰击影响的敏感性分析[J]. 上海交通大学学报(自然版), 2017, 51(4): 410-.
[7] 吴灵杰,寇新建,周拥军,蒋萌. 既有混凝土码头的时变氯离子扩散过程[J]. 上海交通大学学报(自然版), 2017, 51(4): 444-.
[8] 邹旭毛,李良星,孔刘波,王华胜. 颗粒堆积床内两相流动阻力及相间摩擦力[J]. 上海交通大学学报(自然版), 2017, 51(4): 470-.
[9] 刘勇1,陈炉云2. 涡激振动对管道液固两相流流场的影响[J]. 上海交通大学学报(自然版), 2017, 51(4): 485-.
[10] 李曦,张凯晟,杨自力,连之伟. 超声雾化液体除湿系统对室内空气品质的影响[J]. 上海交通大学学报(自然版), 2017, 51(3): 257-.
[11] 陈思,马宁,顾解忡. 基于弱非线性假定的船舶波浪增阻数值计算[J]. 上海交通大学学报(自然版), 2017, 51(3): 277-.
[12] 刘东喜1,唐文勇1,王晋1, 2,薛鸿祥1. 基于非均质多相流模型的液舱晃荡数值模拟[J]. 上海交通大学学报(自然版), 2017, 51(3): 283-.
[13] 王运龙,李楷,沈嘉祺,金超光,陈小雅. 耙吸式挖泥船先进性评价方法[J]. 上海交通大学学报(自然版), 2017, 51(3): 305-.
[14] 马晨增,唐文勇. 独立B型液化天然气运输船绝热层#br# 局部失效对结构安全的影响[J]. 上海交通大学学报(自然版), 2017, 51(3): 300-.
[15] 樊哲良1,王延林1,岳前进1,孙晔2. 基于实测的软刚臂横摆疲劳分析[J]. 上海交通大学学报(自然版), 2017, 51(3): 332-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed