Please wait a minute...
上海交通大学学报(自然版)
0
  其他 本期目录 | 过刊浏览 | 高级检索 |
组态式牵引电动机故障诊断模型
聂冰a,赵慧敏a,丁鸣艳b,李文a
(大连交通大学 a. 软件学院; b. 电气信息学院, 辽宁 大连 116028)
Configurable Fault Diagnosis Model in Induction Motor
NIE Binga,ZHAO Huimina,DING Mingyanb,LI Wena
(a. Software Technology Institute; b. School of Electronics and Information Engineer, Dalian Jiaotong University, Dalian 116028, Liaoning, China)
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

摘要:  针对电动机典型的故障诊断模型网络结构复杂、训练困难等问题,提出一种组态式牵引电动机故障诊断模型.该模型由多个多输入单输出的子径向基函数神经网络构成,每个子模型识别一种故障特征.根据系统需要将多个子模型任意组合,用来识别类型繁多的电动机故障.利用特征提取后的样本数据对该模型进行训练,并通过测试样本验证了故障诊断模型的有效性.结果表明,采用组态式牵引电动机故障诊断模型,一个子模型仅识别一种牵引电动机故障状态,结构简单,模型训练难度小,提高了模型的故障识别能力以及应用的灵活性,为牵引电动机故障诊断提供了一条新思路.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Abstract: Based on the research on typical fault diagnosis model, a configurable diagnosis model of induction motor was proposed to resolve the problem of complexity of network and difficulty of training. This model contains multiple sub RBF neural networks which have multiple inputs and single output, and one type of fault can be recognized by a specific sub-model. The sub-models can be any combination based on the demands of the system, and various faults can be identified. The model is trained using the samples with feature extracted, and the effectiveness of fault diagnosis model is verified through test samples. It is shown that one sub-model can be used to recognize one specific state of motor in the configured fault diagnosis model, the structure is simple, the difficulty of model training is reduced, the fault identification capability of model and flexibility of application are improved,  providing a new method for the induction motor fault diagnosis.

收稿日期: 2014-07-03      出版日期: 2015-03-30
ZTFLH:  TM 307  
基金资助:

国家高技术研究发展计划(863)项目(2012AA040912),辽宁省教育厅高等学校科研计划项目(L2011077,

引用本文:   
聂冰a,赵慧敏a,丁鸣艳b,李文a. 组态式牵引电动机故障诊断模型[J]. 上海交通大学学报(自然版), .
NIE Binga,ZHAO Huimina,DING Mingyanb,LI Wena. Configurable Fault Diagnosis Model in Induction Motor. J. Shanghai Jiaotong Univ.(Sci.) , 2015, 49(03): 402-405.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtunc/CN/      或      http://www.qk.sjtu.edu.cn/jsjtunc/CN/Y2015/V49/I03/402

[1]Martins J F, Piers V F, Pires A J. Unsupervised neuralnetworkbased algorithm for an online diagnosis of treephase induction motor stator fault [J]. IEEE Transaction on Industrial Electronics, 2007,54(1):259264.

[2]Dubey P, Sujatha C. Motor fault classification using wavelet energy and artificial neural network [J]. International Journal of COMADEM, 2009, 12(3):2431.

[3]杨存祥, 朱琛, 解豪杰. 基于RPROP神经网络算法的异步电动机故障诊断[J]. 电力自动化设备, 2012,32(1):8083.

YANG Cunxiang, ZHU Chen, XIE Haojie. Fault diagnosis based on RPROP neural network for asynchronous motor [J]. Electric Power Automation Equipment,2012,32(1):8083.

[4]朱博,胡燕,赵永标. 人工神经网络在故障诊断系统中的应用[J]. 舰船电子工程,2005,25(1):9195.

ZHU Bo, HU Yan, Zhao Yongbiao. Application of artificial neural networks in fault diagnose system [J]. Ship Electronic Engineering,2005,25(1):9195.

[5]HechtNielsen R. Theory of backpropagation neural network [J]. Neural Networks,1989(1):593605.

[6]邱阿瑞,孙健. 牵引电机故障模式识别与诊断[J].清华大学学报:自然科学版,1999,39(3):7274.

QIU Arui, SUN Jian. Pattern recognition and diagnosis of faults in electrical machines [J]. Journal of Tsinghua University: Science and Technology, 1999,39(3):7274.

[7]魏海坤. 神经网络结构设计的理论与方法[M]. 北京:国防工业出版社, 2005.

[8]PonsLlinares J, AntoninoDaviu J A, RieraGuasp M,et al. Induction motor diagnosis based on a transient current analytic wavelet transform via frequency BSplines [J]. IEEE Transactions on Industrial Electronics,2011,58(5):15301544.

[9]WANG Zhenzhou, HAN Ming, LIU Peng,et al. Fault detection of motor’s interturn short circuit based on BP neural network [J]. International Journal of Modelling, Identification and Control, 2012,16(3):234239.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed