中图分类号: O646;O614.112
文献标识码: A
文章编号: 1006-7167(2017)05-0064-04
收稿日期: 2016-09-2
网络出版日期: 2017-05-20
版权声明: 2017 《实验室研究与探索》编辑部 《实验室研究与探索》编辑部 所有
基金资助:
作者简介:
作者简介:张 蕾(1988-),女,甘肃庆阳人,硕士,助理工程师,现主要从事新能源材料研究与教学工作。Tel:029-85587373; E-mail: zhanglei5954@163.com
展开
摘要
设计一个关于锂空气电池催化剂的制备及其催化性能研究的综合实验。采用自交换法结合HF同步刻蚀,在集流体泡沫镍表面原位生成了Ag纳米枝晶电极材料。利用X射线衍射技术、场发射扫描电镜配接X射线谱仪对这种新型复合材料进行成分分析与形貌表征,通过恒电流放电及电化学线性伏安测试评价了材料的电化学性能。结果表明,Ag纳米枝晶在泡沫镍表面均匀分布,将其应用于锂空气电池,在电流密度为1 A/m2时,电池的放电容量从4 774.4 mA·h/g增加到8 203.8 mA·h/g,电催化性能良好。
关键词:
Abstract
A new energy materials comprehensive electrochemical experiment was designed. A galvanic exchange method was applied to in situ deposit Ag on the Ni foam and to prepare an electrode. The production was characterized by X-ray diffraction (XRD), scanning electron-microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) for the analyses in the aspect of structure and morphology. The as-prepared porous Ag@Ni foam was applied as the current collector of air cathode for the Li-air battery, and the electrochemical performances were evaluated by galvanostatic discharge and cyclic voltammetry (CV). The results show that when the current density is 1 A/m2, the capacity is increased from 4 774.4 mA·h/g carbon to 8 203.8 mA·h/g carbon. In this design the synthesis method was simple and controllable. Students’ understanding of the structure and properties of electrode materials can be deepened by the experiment, the experiment also benefits their cultivation of innovation consciousness and comprehensive experimental ability.
Keywords:
实践性教学不仅要将学科问题生活化、情景化、社会化,更是要培养学生的动手能力、创新能力、分析及解决实际问题的能力[1]。高校教学中,实践性教学作为把理论知识向实际能力转变的重要教学环节,需要积极探索及建设满足新需要的综合性实验课程[2-4]。
全球经济发展引起了一系列资源环境问题,锂电池作为目前开发较成熟、应用较广泛的二次电池体系之一,发展迅速,已广泛应用于各行各业。锂空气电池[5]作为新一代绿色电池的代表之一,具有堪比汽油的理论比能量,且成本低、无毒、无污染。电极材料作为锂空气电池的重要组成部分,其开发和应用对锂空气电池的发展起到关键作用[6-9]。目前锂空气电池反应动力学较差,少量高性能催化剂的添加有助于电化学性能的改善,而在满足足量的催化效果的同时这些高成本与高质量的催化剂添加量越少越好[10-11]。
本文设计了以催化剂材料制备、表征和性能测试为主的综合实验[12],以金属泡沫镍和硝酸银为主要实验材料,采用自交换法在集流体泡沫镍表面原位生成纳米Ag枝晶层,应用X射线衍射(XRD)与扫描电子显微镜(SEM)等对产物进行成分及形貌表征,采用循环伏安曲线与充放电曲线对电池的电化学性能进行研究。
近年来,自交换法因其过程简单,产物具有独特的纳米结构而被人们广泛关注[13-14]。理论上,只要金属阳离子Ax+的氧化还原平衡电位较金属单质B更正,Ax+与B之间就可以自发地交换生成A和By+ 。
Ax+ + B→A + By+
贵金属元素普遍具有较高的氧化还原电位,因此自发交换法非常适合制备各种纳米结构的贵金属[12]。
试剂:电池用泡沫镍(LFX-PMN)购于深圳市利飞信环保器材有限公司;超导炭黑(Super P,锂离子电池级)购于合肥科晶有限公司;聚偏氟乙烯 (PVDF,锂离子电池级)购于法国阿科玛公司;N-甲基吡咯烷酮(NMP,锂离子电池级)购于上海晶纯实业有限公司;Celgard2500隔膜购于美国Celgard公司;金属锂片(电池级,ϕ(16×0.8) mm)购于天津中能锂业公司;电解液为含双三氟甲烷磺酰亚胺锂(LiTFSI,锂离子电池级)的四甘醇二甲醚(TEGDME,分析纯)溶剂,分别购于北京化学试剂所和阿拉丁(Aladdin)化学试剂公司;硝酸银(AgNO3,99 %)购于上海安耐吉化学公司;氢氟酸(40 %)、无水乙醇(分析纯)、丙酮(分析纯)购于成都市科龙化工试剂厂。
仪器:LS800S型手套箱(成都德力斯实业有限公司);7000 S型X射线衍射仪(日本岛津),CuKa,扫描速率0.04°/s;ΣIGMA03-55型热场发射扫描电子显微镜配接IncaX-Max20型X射线能谱仪(德国蔡司公司);Land CT2001A型电池性能测试仪(武汉市鑫诺电子有限公司);PARSTAT2273型电化学工作站(美国Princeton Applied Research)。
2.2.1 样品合成
首先将泡沫镍用丙酮与蒸馏水清洗,然后浸泡在与酒精混合溶液(体积比为2∶3)中5 min,迅速加入AgNO3酒精溶液至上述混合溶液并剧烈搅拌。将所得固液体系在室温下放置30 min,直到溶液颜色变色,随后取出泡沫镍并用蒸馏水洗涤5次,在200 ℃下干燥。
2.2.2 电池装配
将超导碳(质量百分比为70)和PVDF (质量百分比为30)混合均匀后溶于NMP溶液,超声30 min后涂于直径14 mm的泡沫镍集流体上,120 ℃真空干燥12 h,未使用Ag原位复合Ni的电极为SP电极。电池的组装在充满Ar气保护的手套箱中进行,水含量要求低于10×10-6。实验所用的电解液为含0.65 mol/L LiTFSI的TEGDME溶剂,负极为直径16 mm的金属锂片,隔膜为Celgard 2 500。
2.2.3 产物成分与形貌表征
(1) XRD测试。对制备的Ag原位复合Ni复合材料样品进行测试,Cu靶X射线(35 kV/200 mA),2θ为20°~90°。
(2) SEM。在进行形态和表面观察前,将试样用导电胶带黏到样品台,送入样品室,分析Ag原位复合Ni复合材料样品的表观形貌特征。
2.2.4 电池的性能测试
电池在纯氧(0.1 MPa)和模拟大气(21% O2 + 79% N2, 0.1 MPa)环境下运行。当电池装配好后,需先静置8 h使电解液充分浸润正极,而后通入气体再静置4 h使氧气溶解于电解液中。电池的恒流放电实验在Land CT2001A电池测试系统上进行,充放电电流设置为1 A/m2,放电截止电压为2.0 V (vs. Li/Li+)。电化学线性伏安测试使用Parstate 2273电化学工作站,LSV的扫描速度为0.5 mV/s,扫描范围为开路电压~1.8 V。
由于Ni表面有天然钝化层,会阻止表面Ni原子与液相Ag离子间的自交换反应的顺利进行,因此需要对泡沫Ni进行HF预处理[15]。由图1可见,只有位于45°与52°两处的衍射峰,对应泡沫金属Ni的(111)和(200)方向的特征峰(见图1(a))。AgNO3水溶液浸渍后的泡沫Ni的谱线图并未出现Ag的衍射峰,也就是说将泡沫Ni加入AgNO3中水溶液后,并未发生置换反应(见图1(b))。同样,将泡沫Ni放入AgNO3乙醇溶液中浸渍后,也未能出现Ag的特征峰(见图1(c))。实验结果显示,仅将泡沫Ni浸于Ag+溶液中,无论溶剂是水还是乙醇,均未能发生自交换反应,泡沫Ni表面的钝化膜会阻止自交换反应的顺利进行。
图1 原始泡沫镍和不同硝酸银溶液中浸渍后的 泡沫镍的XRD图谱||||(a) 原始泡沫Ni; (b) AgNO3水溶液中浸渍后的泡沫Ni; (c) AgNO3乙醇溶液中浸渍后的泡沫Ni; (d) AgNO3水溶液中浸渍后的泡沫Ni(加入HF); (e) AgNO3乙醇溶液中浸渍后的泡沫Ni(加入HF)
由于经HF处理后的泡沫Ni,在水中会迅速钝化,故将泡沫Ni进行HF预处理后,浸渍于AgNO3水溶液时,XRD谱图上也未能出现Ag特征峰(见图1(d))。泡沫Ni在硝酸银乙醇溶液中浸渍后,所得产物的XRD谱线显示,在~38°同时出现了金属Ag(111)方向衍射峰,说明泡沫Ni表面的Ni原子与Ag阳离子间自交换反应顺利进行(见图1(e))。
对自交换反应前后的Ag原位复合Ni复合材料进行形貌分析。由图2可以看出,去钝化的泡沫Ni与Ag+发生自交换反应前(见图2(a))泡沫镍表面光滑,反应后(见图(2(b))泡沫镍表面粗糙,三维网状结构保存完整。由图3可以看出,通过调整HF的加入量,可获取不同结构与形貌的Ag原位复合Ni复合材料。随着HF加入量的增加,泡沫Ni表面Ag的生成量也显著上升,产物由最初的颗粒状(见图(3 (a)),逐渐过渡到枝晶状(见图3(b)),最后产物由密集的枝晶簇组成(见图3 (c))。
综上所述,通过对泡沫镍进行表面处理,采用自交换反应在泡沫镍表面原位生成了Ag枝晶,产物均匀地分布在泡沫镍三维骨架上,通过改变HF的加入量,得到形貌可控的复合材料,其形成是以牺牲泡沫镍表面原子为代价的,对电极质量带来的负担相对较轻。因此,通过实验可得到一种较为理想的催化剂材料。
将Ag原位复合Ni复合材料应用于锂空气电池正极集流体,电流密度1 A/m2时,电池的放电性能如图4所示。首先对比纯氧气氛(0.1 MPa)下(见图4(a), (b))Ag原位复合Ni/SP和SP电极的放电曲线,SP电极放电电压平台为2.59 V,电池的放电容量为4 774.4 mA·h/g;而Ag原位复合Ni/SP电极放电电压平台约为2.64 V,容量为8 203.8 mA·h/g,同样,对比模拟大气氛围(21% O2 + 79% N2, 0.1 MPa)下(见图4(c), (d))的放电曲线,Ag原位复合Ni/SP电极的放电平台压和放电容量分别为2.58 V和2 017.4 mA·h/g,高于SP电极的2.54 V和1 111.9 mA·h/g。
图5为SP电极和Ag原位复合Ni/SP电极沿阴极方向的LSV曲线。可以看出,当SP电极与Ag原位复合Ni/SP电极在氧气下往阴极方向扫描时,两者的曲线上都会出现一个阴极峰。相对来说,SP电极的阴极峰不是特别明显,而Ag原位复合Ni/SP电极的响应电流密度值增大,阴极峰明显,说明了其阴极反应的速率相对较快。实验结果显示,Ag原位复合Ni/SP电极对电池ORR动力学性能有明显改观,电催化效果明显。
本实验通过自交换法制得Ag原位复合Ni复合材料,并将其用于锂空气电池的氧气极,这种复合材料在保持原有泡沫镍三维网状结构的基础上,通过Ag枝晶的均匀生成,在增加了泡沫金属表面的气孔率及比表面积的同时,不会影响催化剂占电极的比例,是一种性能良好的催化剂材料。本实验在设计时,立足新能源材料的学科前沿,考虑到学生实验需要技术路线简单,综合性较强的特点,借助实验室现有的仪器设备,综合无机化学、电化学、现代检测技术等课程知识,在激发学生创新能力的同时,锻炼学生的动手能力,提升学生的综合素质。
The authors have declared that no competing interests exist.
[1] |
实施开放实验培养学生综合、创新能力 [J]. |
[2] |
工科类综合型专业实验教学设计的新模式 [J]. |
[3] |
高校工科类专业创新实践教育探索 [J].URL 摘要
加强高校工科类专业实践教育,提升大学生创新实践能力,是高等教育的历史责任,也是大学生自我发展与创业的现实需求。本文构建了创新实践教育内容体系,详述了科学实施创新实践教育的路径,探索了深化教学方法与教学手段改革在创新实践教育过程中的意义与作用,阐明了构建常态化开放式创新实践环境方法,以及建立创新实践教育保障机制的方法与途径,探索了完善创新实践教育质量监控体系的方式,具有一定的借鉴意义。
|
[4] |
实验教学对提高本科生科研素质的探索 [J]. |
[5] |
A polymer electrolyte-based rechargeable lithium/ oxygen battery [J].DOI:10.1149/1.1836378 URL [本文引用: 1] 摘要
A novel rechargeable Li/O{sub 2} battery is reported. It comprises a Li{sup +} conductive organic polymer electrolyte membrane sandwiched by a thin Li metal foil anode, and a thin carbon composite electrode on which oxygen, the electroactive cathode material, accessed from the environment, is reduced during discharge to generate electric power. It features an all solid state design in which electrode and electrolyte layers are laminated to form a 200 to 300 {micro}m thick battery cell. The overall cell reaction during discharge appears to be 2Li + O{sub 2} {yields} Li{sub 2}O{sub 2}. It has an open-circuit voltage of about 3 V, and a load voltage that spans between 2 and 2.8 V depending upon the load resistance. The cell can be recharged with good coulombic efficiency using a cobalt phthalocyanine catalyzed carbon electrode.
|
[6] |
Enhanced cycling stability of hybrid Li-Air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst [J].DOI:10.1021/jacs.5b03865 URL PMID: 26020366 [本文引用: 1] 摘要
We report an ordered Pd3Fe intermetallic catalyst that exhibits significantly enhanced activity and durability for the oxygen reduction reaction under alkaline conditions. Ordered Pd3Fe enables a hybrid Li-air battery to exhibit the best reported full-cell cycling performance (220 cycles, 880 h).
|
[7] |
A reversible long-life lithium-air battery in ambient air [J].DOI:10.1038/ncomms2855 URL PMID: 23652005 摘要
Abstract Electrolyte degradation, Li dendrite formation and parasitic reactions with H60O and CO60 are all directly correlated to reversibility and cycleability of Li-air batteries when operated in ambient air. Here we replace easily decomposable liquid electrolytes with a solid Li-ion conductor, which acts as both a catholyte and a Li protector. Meanwhile, the conventional solid air cathodes are replaced with a gel cathode, which contacts directly with the solid catholyte to form a closed and sustainable gel/solid interface. The proposed Li-air cell has sustained repeated cycling in ambient air for 100 cycles (~78 days), with discharge capacity of 2,000 mAh g(-1). The recharging is based largely on the reversible reactions of Li60CO61 product, originating from the initial discharge product of Li60O60 instead of electrolyte degradation. Our results demonstrate that a reversible long-life Li-air battery is attainable by coordinated approaches towards the focal issues of electrolytes and Li metal.
|
[8] |
原位负载Au 纳米层在锂空气电池正极中的电催化特性 [J].DOI:10.7503/cjcu20150882 URL Magsci 摘要
<p>通过自发交换法使Au与非水性锂空气电池中的泡沫镍集流体发生反应, 实现了金纳米层催化剂的原位负载. 将其作为非水性锂空气电池正极, 研究了不同气氛(纯氧、大气和模拟大气)下电池的电化学性能. 结果表明, Au纳米层催化剂对氧还原反应/氧逸出反应起到了双功能催化作用, 使得氧气电极在不同气氛下的首次放电容量与电压均显著提升, 容量分别提升至9169, 1604和1853 mA·h/g<sub>carbon</sub>; 同时氧气电极在模拟大气下的充电过电位降低, 能量效率提高, 循环性能得到一定提升.</p>
|
[9] |
Advanced hybrid Li-air batteries with high-performance mesoporous nanocatalysts [J].DOI:10.1039/c4ee00814f URL [本文引用: 1] 摘要
Hybrid Li–air batteries fabricated with mesoporous NiCo2O4nanoflakes directly grown onto nickel foam and N-doped mesoporous carbon loaded onto a hydrophobic carbon paper, respectively, as the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts are found to exhibit the best reported cycle life.
|
[10] |
Mechanochemically driven iodination of activated charcoal for metal-free electrocatalyst for fuel cells and hybrid Li-air cells [J].DOI:10.1016/j.carbon.2015.05.075 URL [本文引用: 1] 摘要
Iodination of carbon-based materials is known to improve their electrocatalytic activity for oxygen reduction reaction. Here, we report iodination of activated charcoal by mechanochemical ball-milling activated charcoal (AcC) in the presence of iodine (I2). The electrodes fabricated from the resultant iodinated AcC (IAcC) show efficient metal-free electrocatalytic activity for fuel cells and hybrid Li-air cells. In addition to iodination, the ball-milling can not only purify AcC but also change morphology. The iodine content in IAcC reaches as high as 0.59at.% (5.8wt.%), the amorphous powder-type morphology of the starting AcC has been changed to the flake-type sheets of the resulting IAcC, and metallic impurities in the IAcC are substantially reduced. The results indicate that the mechanochemical ball-milling simultaneously induces functionalization, structural restoration and purification. Furthermore, the IAcC is readily dispersible in various polar solvents, allowing the fabrication of electrodes via solution processing. The metal-free IAcC cathodes exhibited outstanding electrocatalytic activities for fuel cells and hybrid Li-air cells with higher selectivity, longer-term stability and better tolerance to methanol crossover/CO poisoning effects than the starting AcC and comparable with commercial Pt/C counterparts.
|
[11] |
Hybrid electrolyte Li-air rechargeable batteries based on nitrogen- and phosphorus-doped graphene nanosheets [J].DOI:10.1039/c4ra00809j URL [本文引用: 1] 摘要
Nitrogen doped GNSs (N-doped GNSs) and phosphorus doped GNSs (P-doped GNSs) are examined as cathode electrodes for hybrid electrolyte Li-air batteries under basic conditions. The N-doped GNSs not only show a high discharge voltage that is near that of 20 wt% Pt/carbon black, but also provide better rate performance in the discharge process than that of the P-doped GNSs.
|
[12] |
非均相磁性Fenton 催化剂的综合实验设计 [J].
设计了一个关于非均相Fenton磁性催化剂的制备及其催化性能研究的综合性实验。制备出一种具有核壳结构的Fe_3O_4/α-Fe_2O_3磁性纳米复合材料,采用XRD、SEM、TEM和FTIR等手段对材料的形貌、组成及结构等进行了表征,并将其作为Fenton试剂用于对甲基橙的催化降解。结果表明,实验所得样品具有核壳结构,粒子粒径约为50~80 nm。该催化剂对甲基橙具有较高的催化活性并且具有可利用其磁性回收利用的特点。本实验原料廉价易得,合成操作简单,涵盖多个知识点和实验技能,有利于学生巩固基础理论和实验技能,培养创新精神和综合实验能力,提升科学素质。
|
[13] |
An in situ formed Pd nanolayer as a bifunctional catalyst for Li-air batteries in ambient or simulated air [J].DOI:10.1039/c3cc45574b URL PMID: 24018913 [本文引用: 1] 摘要
We demonstrate for the first time that a Pd nanolayer, which is in situ formed on the Ni foam via the galvanic exchange method, greatly improves the energy output, the round-trip efficiency and the cyclability of the aprotic Li-air battery in ambient or simulated air.
|
[14] |
多孔Ag原位复合Ni泡沫金属的制备及其在非水性锂空气电池上的应用 [J]. |
[15] |
|
版权所有:《实验室研究与探索》编辑部
主管单位:中华人民共和国教育部 主办单位:上海交通大学 出版单位:上海交通大学学报编辑部 地址:上海市华山路1954号包图1516号 邮编:200030 电话:(86-21)62932952 62932875 |
/
〈 |
|
〉 |