Special Issue Papers

A Sub-5 ppm/°C Bandgap Voltage Reference With Dual Source-Sink Current Compensation

  • HANRU YANG ,
  • TIANRUI LYU ,
  • XIAO HUANG ,
  • JIANPING GUO
Expand
  • Sun Yat-sen University, Guangzhou 510275, China
XIAO HUANG (e-mail: )
JIANPING GUO (e-mail: )

JIANPING GUO (Senior Member, IEEE)

Received date: 2024-12-31

  Revised date: 2025-02-17

  Accepted date: 2025-03-15

  Online published: 2025-10-22

Supported by

Industrial Core and Key Technique Research Project of Zhuhai under Grant(2320004002564)

Abstract

This work presents a bandgap voltage reference (BGR) with source-sink dual current compensation achieving a low temperature coefficient (TC) over the automotive temperature range from −40 to 125 °C. The two compensation currents are the inverted-V current (IinvV) and the high-low temperature linear current (IHLT), which appear in the form of sourcing and sinking currents, respectively. This design introduces an inverted-V current to mitigate the degradation of the compensation effect caused by temperature range drifts. By exploiting the characteristics of IinvV and IHLT exhibiting the same drift trend, the dual current compensation achieves the compensation performance over the entire automotive temperature range while mitigating the impact of temperature range drifts, thereby optimizing the overall compensation effect. The measured results show that it achieves the best TC of 2.0 ppm/°C and an average consumption current of 44 μA at room temperature. Moreover, the linear sensitivity (LS) is 0.04%/V and power supply rejection (PSR) is −60 dB at 1 Hz at room temperature.

Cite this article

HANRU YANG , TIANRUI LYU , XIAO HUANG , JIANPING GUO . A Sub-5 ppm/°C Bandgap Voltage Reference With Dual Source-Sink Current Compensation[J]. Integrated Circuits and Systems, 2025 , 2(1) : 13 -21 . DOI: 10.23919/ICS.2025.3553458

[1]
J. M. Amanor-Boadu, M. A. Abouzied, and E. Sánchez-Sinencio, “An efficient and fast Li-ion battery charging system using energy harvesting or conventional sources,” IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 7383-7394, Sep. 2018.

[2]
B. L. Hunter andW. E. Matthews, “A ± 3 ppm/°C single-trim switched capacitor bandgap reference for battery monitoring applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 4, pp. 777-786, Apr. 2017.

[3]
L. Liu, X. Liao, and J.Mu, “A 3.6μVrms noise, 3 ppm/°C TC bandgap reference with offset/noise suppression and five-piece linear compensation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 10, pp. 3786-3796, Oct. 2019.

[4]
H. Luo, Q. Sun, R. Zhang, and H. Zhang,“A 1-V 3.1-ppm/°C 0.8-μW bandgap reference with piecewise exponential curvature compensation,” in Proc. IEEE Asian Solid State Circuits Conf., 2018, pp. 97-98.

[5]
G. Zhu, Y. Yang, and Q. Zhang, “A 4.6-ppm/°C high-order curvature compensated bandgap reference for BMIC,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 9, pp. 1492-1496, Sep. 2019.

[6]
K. Chen, L. Petruzzi, R. Hulfachor, and M. Onabajo, “A 1.16-V 5.8-to-13.5-ppm/°C curvature-compensated CMOS bandgap reference circuit with a shared offset-cancellation method for internal amplifiers,” IEEE J. Solid-State Circuits, vol. 56, no. 1, pp. 267-276, Jan. 2021.

[7]
S. Huang et al., “A sub-1 ppm/°C bandgap voltage reference with highorder temperature compensation in 0.18-μm CMOS process,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 4, pp. 1408-1416, Apr. 2022.

[8]
Z.-K. Zhou et al., “A resistorless high-precision compensated CMOS bandgap voltage reference,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 1, pp. 428-437, Jan. 2019.

[9]
Y. Shen et al., “A 1.2 ppm/°C TC, 0.094% Inaccuracy 3-18 V supplyrange bandgap reference with self-compensation,” in Proc. IEEE Int. Conf. Integr. Circuits, Technol. Appl., 2021, pp. 139-140.

[10]
C.-W. U, M.-K. Law, R. P. Martins, and C.-S. Lam, “Sub-μW autocalibration bandgap voltage reference with 1σ inaccuracy of ± 0.12% within - 40°C to 120°C,” IEEE J. Solid-State Circuits, vol. 59, no. 2, pp. 540-550, Feb. 2024.

[11]
G. Ge, C. Zhang, G. Hoogzaad, and K. A. A. Makinwa, “A singletrim CMOS bandgap reference with a 3σ inaccuracy of ±0.15% from -40°C to 125°C,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2693-2701, Nov. 2011.

[12]
G. Ge, C. Zhang, G. Hoogzaad, and K. Makinwa,“A single-trim CMOS bandgap reference with a 3σ inaccuracy of ±0.15% from -40°C to 125°C,” in Proc. IEEE Int.Solid-State Circuits Conf., 2010, pp. 78-79.

[13]
J.-H. Li, X.-B. Zhang, and M.-Y. Yu, “A 1.2-V piecewise curvature corrected bandgap reference in 0.5 μm CMOS process,” IEEE Trans. Very Large Scale Integr. Syst., vol. 19, no. 6, pp. 1118-1122, Jun. 2011.

[14]
B. Ma and F. Yu, “A novel 1.2-V 4.5-ppm/°C curvature-compensated CMOS bandgap reference,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 4, pp. 1026-1035, Apr. 2014.

[15]
C. M. Andreu, S. Koudounas, and J. Georgiou, “A novel wide temperature-range, 3.9 ppm/°C CMOS bandgap reference circuit,” IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 574-581, Feb. 2012.

[16]
C.-C. Lee et al., “A high-precision bandgap reference with a V-curve correction circuit,” IEEE Access, vol. 8, pp. 62632-62638, 2020.

[17]
L. Petruzzi and A. Candage, “Bandgap curvature correction U.S. Patent 10, 175, 711, Jan. 8, 2019.

[18]
H.-M. Chen, C.-C. Lee, S.-H. Jheng, W.-C. Chen, and B.-Y. Lee, “A sub-1 ppm/°c precision bandgap reference with adjusted-temperaturecurvature compensation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 6, pp. 1308-1317, Jun. 2017.

[19]
R. Behzad, Design of Analog CMOS Integrated Circuits, 2nd ed. New York, NY, USA: McGraw-Hill, 2015.

[20]
R. K. Palani, “Analysis and design of chopperless 7 ppm/°C bandgap voltage reference,” in Proc. IEEE Int. Symp. Circuits Syst., 2024, pp. 1-4.

Outlines

/