综述

傅里叶变换衰减全反射红外光谱检测血液样本在疾病筛查及诊断的应用进展

  • 吴忻禹 ,
  • 张陆成 ,
  • 黎永青
展开
  • 1.广西医科大学再生医学与医用生物资源开发应用省部共建协同创新中心,广西 南宁 530021
    2.广西地中海贫血防治重点实验室,广西 南宁 530021
黎永青 E-mail:Liy@ecu.edu

收稿日期: 2023-12-20

  录用日期: 2024-01-30

  网络出版日期: 2024-06-25

基金资助

广西医科大学青年科学基金项目(GXMUYSF202337)

Application of Fourier transform attenuated total reflectance infrared spectroscopy in clinical hematology examination

  • WU Xinyu ,
  • ZHANG Lucheng ,
  • LI Yongqing
Expand
  • 1. Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Guangxi Nanning 530021, China
    2. Guangxi Key Laboratory for Prevention and Control of Thalassemia, Guangxi Nanning 530021, China.

Received date: 2023-12-20

  Accepted date: 2024-01-30

  Online published: 2024-06-25

摘要

傅里叶变换衰减全反射红外(attenuated total reflection Fourier transform infrared,ATR-FTIR)光谱技术以其快速、准确、无创的特点,在生物医学领域尤其是临床血液学检验中显示出巨大潜力。该技术记录样本中分子的振动光谱,提供生物样品内核酸、蛋白质和脂质的化学结构信息,可用于疾病筛查和诊断。ATR-FTIR光谱技术在地中海贫血、艾滋病毒感染、乳腺癌、卵巢癌和脑瘤等疾病中的研究现状和发展情况,提示该技术结合化学计量学方法可实现疾病的快速筛查、诊断与鉴别诊断。ATR-FTIR光谱技术与偏最小二乘法回归模型相结合,以定量法分析人外周血样品中平均红细胞血红蛋白含量、平均红细胞体积和血红蛋白等地中海贫血筛查指标,筛查地中海贫血的灵敏度、特异度分别达到100.0%和95.3%。采用ATR-FTIR光谱技术,基于遗传算法的线性判别分析法,分析血液样本红外图谱中1 653 cm-1(酰胺Ⅰ带)、1 558 cm-1(酰胺Ⅱ带)、1 506 cm-1(环基)和901 cm-1(磷酸二酯伸缩带)处的特征峰,对人类免疫缺陷病毒(human immunodeficiency virus,HIV)感染孕妇血液样本的辨别准确率为89%,灵敏度、特异度分别为83%、92%。采用主成分回归(principal component regression)法对乳腺患者血液ATR-FTIR光谱进行识别,其灵敏度与特异度高达92.3%与87.1%此外,ATR-FTIR光谱技术还可应用于生物医学领域的其他方面,如细胞和组织学样本的检测、疾病严重程度的分类等。ATR-FTIR光谱技术展现出广阔的应用前景,但仍面临环境干扰、样本污染等挑战。未来,随着ATR-FTIR光谱技术的优化、发展,其有望在更多疾病的临床血液学检验中发挥重要作用。

本文引用格式

吴忻禹 , 张陆成 , 黎永青 . 傅里叶变换衰减全反射红外光谱检测血液样本在疾病筛查及诊断的应用进展[J]. 诊断学理论与实践, 2024 , 23(03) : 335 -340 . DOI: 10.16150/j.1671-2870.2024.03.013

Abstract

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy shows great potential for biomedical applications, especially in clinical hematology, due to its rapid, accurate, and non-invasive nature. The technique captures molecular vibrational spectra, yielding detailed chemical information of nucleic acids, proteins, and lipids in biological samples critical for disease screening and diagnosis. Extensive research demonstrates the efficacy of ATR-FTIR in diagnosing diseases, such as thalassemia, AIDS, breast cancer, ovarian cancer, and brain tumors. Combining ATR-FTIR with chemometrics enables accurate disease screening and differential diagnosis. ATR-FTIR spectroscopy combined with partial least squares regression model was used to quantitatively analyze thalassaemia screening indices in human peripheral blood samples,such as mean erythrocyte haemoglobin content, mean erythrocyte volume and haemoglobin, and the sensitivity and specificity of screening reached 100.0% and 95.3%, respectively. ATR-FTIR spectroscopy combined with linear discriminant analysis method based on genetic algorithm were used to identify the characteristic peaks at 1,558 cm-1 (amide Ⅰ band), 1,506 cm-1 (cyclic group) and 901 cm-1 (phosphodiester stretching band) in the blood samples of pregnant women, the sensitivity and specificity for diagnoding human immunodeficiency virus (HIV) infection was 89% and and 92%, respectively. In breast cancer, ATR-FTIR coupled with principal component regression (PCR) methods reached sensitivity and specificity of 92.3% and 87.1%, respectively. Furthermore, ATR-FTIR spectroscopy is applicable in other biomedical domains, such as detecting cellular and histological samples and classifying disease severity. Despite its promise, challenges like environmental interference and sample contamination persist. Future advancements and optimizations in ATR-FTIR spectroscopy are anticipated to enhance its role in clinical hematology and extend its applicability to a broader spectrum of diseases.

参考文献

[1] KAZNOWSKA E, DEPCIUCH J, SZMUC K, et al. Use of FTIR spectroscopy and PCA-LDC analysis to identify cancerous lesions within the human colon[J]. J Pharm Biomed Anal, 2017, 134: 259-68.
[2] 蔡碧琼, 蔡向阳, 张福娣. 衰减全反射--傅里叶变换红外光谱技术的发展及应用[J]. 武夷科学, 2004, 20(1):192-194.
  CAI B Q, CAI X Y, Zhang F D. Advances and application in technology of attenuated total reflectance FTIR spectroscopy[J]. Wuyi Sci J, 2004, 20(1):192-194.
[3] 张小青, 徐智, 凌晓锋, 等. 红外光谱技术在医学中的应用[J]. 光谱学与光谱分析, 2010, 30(1):30-34.
  ZHANG X Q, XU Z, LING X F, et al. The application of fourier transform infrared technology in biomedical sphere[J]. Spectrosc Spectral Anal, 2010, 30(1): 30-34.
[4] LOPES J, CORREIA M, MARTINS I, et al. FTIR and raman spectroscopy applied to dementia diagnosis through analysis of biological fluids[J]. J Alzheimers Dis, 2016, 52(3):801-812.
[5] 张小青, 孙小亮, 潘庆华, 等. 衰减全反射傅里叶变换红外光谱技术的临床应用研究进展[J]. 光谱学与光谱分析, 2017, 37(2):408-411.
  ZHANG X Q, SUN X L, PAN Q H, et al. The advancement of attenuated total reflection fourier transforminfrared technology in clinical application[J]. Spectrosc Spectral Anal, 2017, 37(2): 408-411.
[6] ZHANG X, THIéFIN G, GOBINET C, et al. Profiling serologic biomarkers in cirrhotic patients via high-throughput Fourier transform infrared spectroscopy: toward a new diagnostic tool of hepatocellular carcinoma[J]. Transl Res, 2013, 162(5):279-286.
[7] SILVA L G, PéRES A F S, FREITAS D L D, et al. ATR-FTIR spectroscopy in blood plasma combined with multivariate analysis to detect HIV infection in pregnant women[J]. Sci Rep, 2020, 10(1):20156.
[8] PANG W, XING Y, MORAIS C L M, et al. Serum-based ATR-FTIR spectroscopy combined with multivariate analysis for the diagnosis of pre-diabetes and diabetes[J]. Analyst, 2024, 149(2):497-506.
[9] TIERNAN H, BYRNE B, KAZARIAN S G. ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 241:118636.
[10] 尹浩, 潘涛, 田佩玲, 等. FTIR/ATR光谱应用于人体血液血红蛋白的快速定量分析[J]. 光谱实验室, 2009, 26(2):431-436.
  YIN H, PAN T, TIAN P L, et al. Rapid quantitative analysis for the human blood hemoglobin applied through FTIR/ATR spectrum[J]. Spectrosc Lab, 2009, 26(2): 431-436.
[11] 丘家杵, 阮萍, 雍军光, 等. 健康人血红蛋白紫外可见吸收光谱和FTIR光谱[J]. 光谱学与光谱分析, 2020, 40(5):1425-1430.
  QIU J Z, RUAN P, YONG J G, et al. UV-visible absorption spectra and FTIR of hemoglobin of healthy people and it spectroscopic analysis[J]. Spectrosc Spectral Anal, 2020, 40(5): 1425-1430.
[12] MATEUS PEREIRA DE SOUZA N, HUNTER MACHADO B, KOCHE A, et al. Detection of metabolic syndrome with ATR-FTIR spectroscopy and chemometrics in blood plasma[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2023, 288:122135.
[13] CHENG W L, HSIAO C H, TSENG H W, et al. Noninvasive prenatal diagnosis[J]. Taiwan J Obstet Gynecol, 2015, 54(4):343-349.
[14] BRANCALEONI V, DI PIERRO E, MOTTA I, et al. Laboratory diagnosis of thalassemia[J]. Int J Lab Hematol, 2016, 38 Suppl 1:32-40.
[15] 彭立新, 王桂文, 姚辉璐, 等. FTIR-HATR诊断β-地中海贫血及其机理研究[J]. 光谱学与光谱分析, 2009, 29(5):1232-1236.
  PENG L X, WANG G W, YAO H L, et al. FTIR-HATR diagnosis of beta-thalassemia and its mechanism study[J]. Spectrosc Spectral Anal, 2009, 29(5): 1232-1236.
[16] 郑元涛, 彭立新, 姚辉璐, 等. FTIR-HATR诊断α-地中海贫血[J]. 广西科学, 2011, 18(3):228-232.
  ZHENG Y T, PENG L X, YAO H L, et al. Identification of α-Thalassemia by FTIR-HATR Spectroscopy[J]. Guangxi Sci, 2011, 18(3): 228-232.
[17] WAN J H, TIAN P L, YIN H, et al. A preliminary evaluation of attenuated total reflection Fourier transform infrared spectroscopy for the hematological analysis of thalassemias[J]. Clin Biochem, 2013, 46(1-2):128-132.
[18] 龙小丽, 刘桂松, 肖青青, 等. 傅里叶变换红外光谱结合衰减全反射技术用于地贫筛查指标的无试剂定量分析[J]. 光谱学与光谱分析, 2014(10):2769-2774.
  LONG X L, LIU G S, XIAO Q Q, et al. Fourier transform infrared spectroscopy combined with attenuated total reflection applied to reagent-free quantitative analysis of thalassemia screening indicators[J]. Spectrosc Spectral Anal, 2014, 34(10): 2769-2774.
[19] AKSOY C, GULIYEV A, KILIC E, et al. Bone marrow mesenchymal stem cells in patients with beta thalassemia major: molecular analysis with attenuated total reflection-Fourier transform infrared spectroscopy study as a novel method[J]. Stem Cells Dev, 2012, 21(11):2000-2011.
[20] SITOLE L, STEFFENS F, KRüGER T P, et al. Mid-ATR-FTIR spectroscopic profiling of HIV/AIDS sera for novel systems diagnostics in global health[J]. OMICS, 2014, 18(8):513-523.
[21] WANG J J, LEI K F, HAN F. Tumor microenvironment: recent advances in various cancer treatments[J]. Eur Rev Med Pharmacol Sci, 2018, 22(12):3855-3864.
[22] 邵志博, 杨犇龙, 吴炅. 2022年中国乳腺癌重要临床试验成果及最新进展[J]. 中国癌症杂志, 2023, 33(2):103-109.
  SHAO Z B, YANG B L, W J, et al. Progress of important clinical trials of breast cancer in China in 2022[J]. Chin Oncol, 2023, 33(2): 103-109.
[23] 谢文, 汪珺莉, 夏菲. 乳腺癌超声征象与p120ctn及CD133表达的相关性[J]. 安徽医学, 2023, 44(2):181-184.
  XIE W, WANG J L, XIA F. Correlation between ultrasonographic signs and the expression of p120ctn and CD133 in breast cancer[J] Anhui Med J, 2023, 44(2): 181-184.
[24] 邹明池, 冉海涛, 姚延峰. 人工智能在乳腺癌超声筛查中的应用进展[J]. 中国临床研究, 2024, 37(3):344-347,364.
  ZOU M C, RAN H T, YAO Y F. Artificial intelligence advancements in breast cancer ultrasound screening[J]. Chin J Clin Res, 2024, 37(3):344-347,364.
[25] SITNIKOVA V E, KOTKOVA M A, NOSENKO T N, et al. Breast cancer detection by ATR-FTIR spectroscopy of blood serum and multivariate data-analysis[J]. Talanta, 2020, 214:120857.
[26] GIAMOUGIANNIS P, MORAIS C L M, RODRIGUEZ B, et al. Detection of ovarian cancer (± neo-adjuvant chemotherapy effects) via ATR-FTIR spectroscopy: comparative analysis of blood and urine biofluids in a large patient cohort[J]. Anal Bioanal Chem, 2021, 413(20):5095-5107.
[27] GUO S, WEI G, CHEN W, et al. Fast and deep diagnosis using blood-based ATR-FTIR spectroscopy for digestive tract cancers[J]. Biomolecules, 2022, 12(12):1815.
[28] BANERJEE A, GOKHALE A, BANKAR R, et al. Rapid classification of COVID-19 severity by ATR-FTIR spectroscopy of plasma samples[J]. Anal Chem, 2021, 93(30):10391-10396.
[29] ANDREW CHAN K L, KAZARIAN S G. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) ima-ging of tissues and live cells[J]. Chem Soc Rev, 2016, 45(7):1850-1864.
[30] BHARGAVA R. Infrared spectroscopic imaging: the next generation[J]. Appl Spectrosc, 2012, 66(10):1091-1120.
[31] 李晓婷, 朱大洲, 潘立刚, 等. 红外显微成像技术及其应用进展[J]. 光谱学与光谱分析, 2011, 31(9):2313-2318.
  LI X T, ZHU D Z, PAN L G, et al. FTIR microspectroscopy and its progress in application[J]. Spectrosc Spectral Anal, 2011, 31(9): 2313-2318.
[32] KRAFFT C, SALZER R, SEITZ S, et al. Differentiation of individual human mesenchymal stem cells probed by FTIR microscopic imaging[J]. Analyst, 2007, 132(7):647-653.
[33] WROBEL T P, MARZEC K M, MAJZNER K, et al. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell[J]. Analyst, 2012, 137(18):4135-4139.
[34] VONGSVIVUT J, PéREZ-GUAITA D, WOOD B R, et al. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells[J]. Analyst, 2019, 144(10):3226-3238.
[35] LI C, BUTLER H J, MARTIN-HIRSCH P L, et al. Aluminium foil as a potential substrate for ATR-FTIR, transflection FTIR or Raman spectrochemical analysis of biological specimens[J]. Anal Methods, 2016, 8, 481-487.
文章导航

/