免疫检查点及其抑制剂的发展
收稿日期: 2021-10-29
网络出版日期: 2022-07-25
基金资助
上海市科学技术委员会科技计划项目(20DZ2201900);上海市科学技术委员会科技计划项目(18411953100);国家自然科学基金项目(82072602);国家自然科学基金项目(81772505);国家重点研发计划课题(2016YFC1303202);国家重点研发计划课题(2017YFC0908300);上海交通大学医学院转化医学协同创新中心研究项目(TM202001)
于颖彦 . 免疫检查点及其抑制剂的发展[J]. 内科理论与实践, 2022 , 17(01) : 48 -52 . DOI: 10.16138/j.1673-6087.2022.01.009
| [1] | Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition[J]. Nat Rev Immunol, 2013, 13(4): 227-242. |
| [2] | Kähler KC, Hauschild A. Treatment and side effect management of CTLA-4 antibody therapy in metastatic melanoma[J]. J Dtsch Dermatol Ges, 2011, 9(4): 277-286. |
| [3] | Zhai Y, Moosavi R, Chen M. Immune checkpoints, a novel class of therapeutic targets for autoimmune diseases[J]. Front Immunol, 2021, 12: 645699. |
| [4] | Xiang Z, Zhou Z, Song S, et al. Dexamethasone suppresses immune evasion by inducing GR/STAT 3 mediated downregulation of PD-L1 and IDO1 pathways[J]. Oncogene, 2021, 40(31): 5002-5012. |
| [5] | Zahavi DJ, Weiner LM. Targeting multiple receptors to increase checkpoint blockade efficacy[J]. Int J Mol Sci, 2019, 20(1): 158. |
| [6] | Hernández áP, Juanes-Velasco P, Landeira-Viñuela A, et al. Restoring the immunity in the tumor microenvironment: insights into immunogenic cell death in onco-therapies[J]. Cancers (Basel), 2021, 13(11): 2821. |
| [7] | Muller AJ, Manfredi MG, Zakharia Y, et al. Inhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyond[J]. Semin Immunopathol, 2019, 41(1): 41-48. |
| [8] | Wang J, Sun J, Liu LN, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy[J]. Nat Med, 2019, 25(4): 656-666. |
| [9] | Ren X. Immunosuppressive checkpoint Siglec-15: a vital new piece of the cancer immunotherapy jigsaw puzzle[J]. Cancer Biol Med, 2019, 16(2): 205-210. |
| [10] | Mathieu L, Shah S, Pai-Scherf L, et al. FDA approval summary: atezolizumab and durvalumab in combination with platinum-based chemotherapy in extensive stage small cell lung cancer[J]. Oncologist, 2021, 26(5): 433-438. |
| [11] | Kaplon H, Reichert JM. Antibodies to watch in 2019[J]. MAbs, 2019, 11(2): 219-238. |
| [12] | Keam SJ. Toripalimab: first global approval[J]. Drugs, 2019, 79(5): 573-578. |
| [13] | Zhang Y, Li X, Sun Y, et al. Pharmacokinetics of S-epacadostat, an indoleamine 2,3-dioxygenase 1 inhibitor, in dog plasma and identification of its metabolites in vivo and in vitro[J]. Biomed Chromatogr, 2021, 35(12); e5226. |
| [14] | Shi JG, Bowman KJ, Chen X, et al. Population pharmacokinetic and pharmacodynamic modeling of epacadostat in patients with advanced solid malignancies[J]. J Clin Pharmacol, 2017, 57(6): 720-729. |
| [15] | Yu Y. Repurposing glucocorticoids as adjuvant reagents for immune checkpoint inhibitors in solid cancers[J]. Cancer Biol Med, 2021, 18 (4): 944-948. |
| [16] | Fattakhova E, Hofer J, DiFlumeri J, et al. Identification of the FDA-approved drug pyrvinium as a small-molecule inhibitor of the PD-1/PD-L1 interaction[J]. ChemMedChem, 2021, 16(18): 2769-2774. |
| [17] | Han N, Hwang W, Tzelepis K, et al. Identification of SARS-CoV-2-induced pathways reveals drug repurposing strategies[J]. Sci Adv, 2021, 7(27): eabh3032. |
| [18] | Bronte G, Verlicchi A, De Matteis S, et al. Circulating myeloid-derived suppressive-like cells and exhausted immune cells in non-small cell lung cancer patients treated with three immune checkpoint inhibitors[J]. Front Immunol, 2021, 12: 672219. |
| [19] | Takahashi A, Namikawa K, Ogata D, et al. Real-world efficacy and safety data of nivolumab and ipilimumab combination therapy in Japanese patients with advanced melanoma[J]. J Dermatol, 2020, 47(11): 1267-1275. |
| [20] | Gaudreau PO, Lee JJ, Heymach JV, et al. Phase Ⅰ/Ⅱ trial of immunotherapy with durvalumab and tremelimumab with continuous or intermittent MEK inhibitor selumetinib in NSCLC[J]. Clin Lung Cancer, 2020, 21(4): 384-388. |
| [21] | Hammers HJ, Plimack ER, Infante JR, et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma[J]. J Clin Oncol, 2017, 35(34): 3851-3858. |
| [22] | McGregor BA, Campbell MT, Xie W, et al. Results of a multicenter, phase 2 study of nivolumab and ipilimumab for patients with advanced rare genitourinary malignancies[J]. Cancer, 2021, 127(6): 840-849. |
| [23] | Ebata T, Shimizu T, Fujiwara Y, et al. Phase Ⅰ study of the indoleamine 2,3-dioxygenase 1 inhibitor navoximod (GDC-0919) as monotherapy and in combination with the PD-L1 inhibitor atezolizumab in Japanese patients with advanced solid tumours[J]. Invest New Drugs, 2020, 38(2): 468-477. |
| [24] | Jung KH, LoRusso P, Burris H, et al. Phase Ⅰ study of the indoleamine 2,3-dioxygenase 1(IDO1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (atezolizumab) in advanced solid tumors[J]. Clin Cancer Res, 2019, 25: 3220-3228. |
| [25] | Hollebecque A, Chung HC, de Miguel MJ, et al. Safety and antitumor activity of α-PD-L1 antibody as monotherapy or in combination with α-TIM-3 antibody in patients with microsatellite instability-high/mismatch repair-deficient tumors[J]. Clin Cancer Res, 2021, 27(23): 6393-6404. |
| [26] | Atkinson V, Khattak A, Haydon A, et al. Eftilagimod alpha, a soluble lymphocyte activation gene-3 (LAG-3) protein plus pembrolizumab in patients with metastatic melanoma[J]. J Immunother Cancer, 2020, 8(2): e001681. |
| [27] | De Luca AJ, Lyons AB, Flies AS. Cytokines: signalling improved immunotherapy?[J]. Curr Oncol Rep, 2021, 23(9): 103. |
| [28] | Shibata Y, Murakami S, Kato T. Overview of checkpoint inhibitor pneumonitis: incidence and associated risk factors[J]. Expert Opin Drug Saf, 2021, 20(5): 537-547. |
| [29] | Cunningham M, Iafolla M, Kanjanapan Y, et al. Evaluation of liver enzyme elevations and hepatotoxicity in patients treated with checkpoint inhibitor immunotherapy[J]. PLoS One, 2021, 16(6): e0253070. |
/
| 〈 |
|
〉 |