综述

铜代谢稳态失调与神经退行性疾病的相关性研究进展

展开
  • 上海交通大学医学院附属瑞金医院神经内科,上海 200025

收稿日期: 2021-06-21

  网络出版日期: 2022-07-25

基金资助

国家自然科学基金项目(81971068);2018年上海市“医苑新星”青年医学人才培养资助计划

本文引用格式

李建平, 王刚 . 铜代谢稳态失调与神经退行性疾病的相关性研究进展[J]. 内科理论与实践, 2021 , 16(05) : 361 -365 . DOI: 10.16138/j.1673-6087.2021.05.015

参考文献

[1] Kardos J, Héja L, Simon á, et al. Copper signalling: causes and consequences[J]. Cell Commun Signal, 2018, 16(1): 71.
[2] Chen J, Jiang Y, Shi H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflugers Arch, 2020, 472(10): 1415-1429.
[3] Zaccak M, Qasem Z, Gevorkyan-Airapetov L, et al. An EPR study on the interaction between the Cu(I) metal binding domains of ATP7B and the ATOX1 metallochaperone[J]. Int J Mol Sci, 2020, 21(15): 5536.
[4] Santoro A, Calvo JS, Peris-Díaz MD, et al. The glutathione/metallothionein system challenges the design of efficient O2 -activating copper complexes[J]. Angew Chem Int Ed Engl, 2020, 59(20): 7830-7835.
[5] Scheiber IF, Bruha R, Dušek P. Pathogenesis of Wilson disease[J]. Handb Clin Neurol, 2017, 142: 43-55.
[6] Antonucci L, Porcu C, Iannucci G, et al. Non-alcoholic fatty liver disease and nutritional implications: special focus on copper[J]. Nutrients, 2017, 9(10): 1137.
[7] Yu CH, Lee W, Nokhrin S, et al. The structure of metal binding domain 1 of the copper transporter ATP7B reveals mechanism of a singular Wilson disease mutation[J]. Sci Rep, 2018, 8(1): 581.
[8] Braiterman LT, Gupta A, Chaerkady R, et al. Communication between the N and C termini is required for copper-stimulated Ser/Thr phosphorylation of Cu(I)-ATPase (ATP7B)[J]. J Biol Chem, 2015, 290(14): 8803-8819.
[9] Kluska A, Kulecka M, Litwin T, et al. Whole-exome sequencing identifies novel pathogenic variants across the ATP7B gene and some modifiers of Wilson’s disease phenotype[J]. Liver Int, 2019, 39(1): 177-186.
[10] Chang IJ, Hahn SH. The genetics of Wilson disease[J]. Handb Clin Neurol, 2017, 142: 19-34.
[11] Hua R, Hua F, Jiao Y, et al. Mutational analysis of ATP7B in Chinese Wilson disease patients[J]. Am J Transl Res, 2016, 8(6): 2851-2861.
[12] Cheng N, Wang H, Wu W, et al. Spectrum of ATP7B mutations and genotype-phenotype correlation in large-scale Chinese patients with Wilson disease[J]. Clin Genet, 2017, 92(1): 69-79.
[13] Braiterman LT, Murthy A, Jayakanthan S, et al. Distinct phenotype of a Wilson disease mutation reveals a novel trafficking determinant in the copper transporter ATP7B[J]. Proc Natl Acad Sci U S A, 2014, 111(14): E1364-E1373.
[14] Fanni D, Gerosa C, Nurchi VM, et al. Copper-induced epigenetic changes shape the clinical phenotype in Wilson’s disease[J]. Curr Med Chem, 2021, 28(14): 2707-2716.
[15] Ferenci P, Stremmel W, Członkowska A, et al. Age and sex but not ATP7B genotype effectively influence the clinical phenotype of Wilson disease[J]. Hepatology, 2019, 69(4): 1464-1476.
[16] 周霄颖, 尹瀚浚, 王春莉, 等. 55例肝豆状核变性患儿表型与基因型分析[J]. 中华肝脏病杂志, 2020, 28(7): 603-607.
[17] Borchard S, Bork F, Rieder T, et al. The exceptional sensitivity of brain mitochondria to copper[J]. Toxicol In Vitro, 2018, 51: 11-22.
[18] Huster D. Structural and metabolic changes in Atp7b-/- mouse liver and potential for new interventions in Wilson’s disease[J]. Ann N Y Acad Sci, 2014, 1315: 37-44.
[19] Mikol J, Vital C, Wassef M, et al. Extensive cortico-subcortical lesions in Wilson’s disease: clinico-pathological study of two cases[J]. Acta Neuropathol, 2005, 110(5): 451-458.
[20] Smolinski L, Litwin T, Redzia-Ogrodnik B, et al. Brain volume is related to neurological impairment and to copper overload in Wilson’s disease[J]. Neurol Sci, 2019, 40(10): 2089-2095.
[21] Doganay S, Gumus K, Koc G, et al. Magnetic susceptibility changes in the basal ganglia and brain stem of patients with Wilson’s disease: evaluation with quantitative susceptibility mapping[J]. Magn Reson Med Sci, 2018, 17(1): 73-79.
[22] Poujois A, Mikol J, Woimant F. Wilson disease: brain pathology[J]. Handb Clin Neurol, 2017, 142: 77-89.
[23] Mariani S, Ventriglia M, Simonelli I, et al. Fe and Cu do not differ in Parkinson’s disease: a replication study plus meta-analysis[J]. Neurobiol Aging, 2013, 34(2): 632-633.
[24] Pall HS, Williams AC, Blake DR, et al. Raised cerebrospinal-fluid copper concentration in Parkinson’s disease[J]. Lancet, 1987, 2(8553): 238-241.
[25] Davies KM, Bohic S, Carmona A, et al. Copper pathology in vulnerable brain regions in Parkinson’s disease[J]. Neurobiol Aging, 2014, 35(4): 858-866.
[26] Miotto MC, Rodriguez EE, Valiente-Gabioud AA, et al. Site-specific copper-catalyzed oxidation of α-synuclein: tightening the link between metal binding and protein oxidative damage in Parkinson’s disease[J]. Inorg Chem, 2014, 53(9): 4350-4358.
[27] Bisaglia M, Bubacco L. Copper ions and Parkinson’s disease: why is homeostasis so relevant?[J]. Biomolecules, 2020, 10(2): 195.
[28] Horvath I, Blockhuys S, Šulskis D, et al. Interaction between copper chaperone ATOX1 and Parkinson’s disease protein α-synuclein includes metal-binding sites and occurs in living cells[J]. ACS Chem Neurosci, 2019, 10(11): 4659-4668.
[29] Gou DH, Huang TT, Li W, et al. Inhibition of copper transporter 1 prevents α-synuclein pathology and alleviates nigrostriatal degeneration in AAV-based mouse model of Parkinson’s disease[J]. Redox Biol, 2021, 38: 101795.
[30] Ha Y, Yang A, Lee S, et al. Dopamine and Cu+/2+ can induce oligomerization of alpha-synuclein in the absence of oxygen: two types of oligomerization mechanisms for alpha-synuclein and related cell toxicity studies[J]. J Neurosci Res, 2014, 92(3): 359-368.
[31] Tavassoly O, Nokhrin S, Dmitriev OY, et al. Cu(Ⅱ) and dopamine bind to α-synuclein and cause large conformational changes[J]. Febs J, 2014, 281(12): 2738-2753.
[32] Tian S, Jones SM, Jose A, et al. Chloride control of the mechanism of human serum ceruloplasmin (Cp) catalysis[J]. J Am Chem Soc, 2019, 141(27): 10736-10743.
[33] Wang B, Wang XP. Does ceruloplasmin defend against neurodegenerative diseases?[J]. Curr Neuropharmacol, 2019, 17(6): 539-549.
[34] Ayton S, Lei P, Duce JA, et al. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease[J]. Ann Neurol, 2013, 73(4): 554-559.
[35] Trist BG, Davies KM, Cottam V, et al. Amyotrophic lateral sclerosis-like superoxide dismutase 1 proteinopathy is associated with neuronal loss in Parkinson’s disease brain[J]. Acta Neuropathol, 2017, 134(1): 113-127.
[36] Wright GSA. Molecular and pharmacological chaperones for SOD1[J]. Biochem Soc Trans, 2020, 48(4): 1795-1806.
[37] Squitti R, Simonelli I, Ventriglia M, et al. Meta-analysis of serum non-ceruloplasmin copper in Alzheimer’s disease[J]. J Alzheimers Dis, 2014, 38(4): 809-822.
[38] Schrag M, Mueller C, Zabel M, et al. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis[J]. Neurobiol Dis, 2013, 59: 100-110.
[39] Li DD, Zhang W, Wang ZY, et al. Serum copper, zinc, and iron levels in patients with Alzheimer’s disease[J]. Front Aging Neurosci, 2017, 9: 300.
[40] Wang ZX, Tan L, Wang HF, et al. Serum iron, zinc, and copper levels in patients with Alzheimer’s disease[J]. J Alzheimers Dis, 2015, 47(3): 565-581.
[41] Cheignon C, Tomas M, Bonnefont-Rousselot D, et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease[J]. Redox Biol, 2018, 14: 450-464.
[42] Kepp KP. Alzheimer’s disease due to loss of function: a new synthesis of the available data[J]. Prog Neurobiol, 2016, 143: 36-60.
[43] Squitti R, Siotto M, Arciello M, et al. Non-ceruloplasmin bound copper and ATP7B gene variants in Alzheimer’s disease[J]. Metallomics, 2016, 8(9): 863-873.
文章导航

/