甲状腺结节良恶性的分子分型研究
收稿日期: 2023-06-05
网络出版日期: 2024-01-09
基金资助
国家自然科学基金项目(92059106);国家自然科学基金项目(82141115)
Molecular study of benign and malignant thyroid nodules
Received date: 2023-06-05
Online published: 2024-01-09
目的:建立用于甲状腺结节分子分型的二代靶向测序方案。方法:基于生物素化探针靶向捕获和高通量测序技术,对112个甲状腺结节相关基因进行靶向测序,建立用于甲状腺结节分子分型与分化水平的二代靶向测序方案,甲状腺结节Panel(ThyNod Panel,甲结Panel)。基因包括甲状腺良性结节相关基因、甲状腺恶性肿瘤相关基因、甲状腺发育和功能基因、细胞来源标志基因等,检测目的基因碱基替换、插入缺失、拷贝数变异和融合等突变类型以及基因表达水平。使用甲结Panel对良恶性甲状腺结节进行分子分型。结果:成功构建并应用甲结Panel,完成856例良恶性甲状腺结节检测。其中676例甲状腺结节检出意义明确的突变,占比79.0%。627例甲状腺结节病理诊断明确,良性结节占比17.6%。甲状腺恶性肿瘤病理类型包括经典性乳头状癌、滤泡亚型乳头状癌、髓样癌等。最常见的突变检出基因为BRAF(n=426),其次是RET(n=68),RET/PTC融合(n=68),DICER1(n=35),还有端粒酶逆转录酶(telomerase reverse transcriptase, TERT)(n=35)、HRAS(n=24)、NRAS(n=23)、神经营养酪氨酸受体激酶(neurotrophin receptor kinase, NTRK3)融合基因(n=19)、真核翻译起始因子1A,X染色体(eukaryotic translation initiation factor 1A, X-chromosomal, EIF1AX)基因(n=11)等。对检出突变统计结节恶性率,BRAF V600E、RET融合变异等结节恶性比例高于90.0%,而RAS-类变异恶性率仅为18.9%。结论:甲结Panel可有效进行甲状腺结节的分子分型。
关键词: 甲状腺结节; 甲状腺结节Panel; 靶向测序; 融合变异
李浩榕, 韩如来, 郁丹燕, 叶蕾 . 甲状腺结节良恶性的分子分型研究[J]. 内科理论与实践, 2023 , 18(04) : 266 -269 . DOI: 10.16138/j.1673-6087.2023.04.011
Objective To establish a next-generation sequencing panel for the molecular diagnosis of thyroid nodules. Methods The panel, named ThyNod Panel, was designed to detect single nucleotide variant(SNV), indel, fusion, copy number variant (CNV) and RNA expression levels in 112 thyroid nodules associated genes, including benign and malignant molecular markers, thyroid differentiation or function genes and cell identity marker genes. Results The ThyNod Panel was successfully constructed and applied, and 856 benign or malignant thyroid nodules were completed sequencing. Totally 676 (79.0%) thyroid nodules were detected mutations. In 627 thyroid nodules with definite pathological diagnosis, 17.6% were benign nodules and 82.4% were malignant ones, in which malignant pathological types included classical papillary carcinoma, follicular variant papillary carcinoma, and medullary carcinoma. The most common mutant genes detected were BRAF (n=426), followed by RET (n=68), RET/PTC fusion (n=68), DICER1 (n=35), telomerase reverse transcriptase (TERT) (n=35), HRAS (n=24), NRAS (n=23), neurotrophin receptor kinase (NTRK3) fusion (n=19), and eukaryotic translation initiation factor 1A, X-chromosomal (EIF1AX) (n=11). The malignant percentage was counted for the detected mutations, and the malignant related variants such as BRAF V600E and RET fusion were higher than 90.0%, while the overall malignant percentage of RAS-like variants was only 18.9%. Conclusions ThyNod Panel can efficiently identify genetic characteristics in thyroid nodules and be applied in the molecular diagnosis of thyroid nodules.
Key words: Thyroid nodules; ThyNod Panel; Target sequencing; Fusion
| [1] | Baloch ZW, Asa SL, Barletta JA, et al. Overview of the 2022 WHO classification of thyroid neoplasms[J]. Endocr Pathol, 2022, 33(1): 27-63. |
| [2] | Durante C, Costante G, Lucisano G, et al. The natural history of benign thyroid nodules[J]. JAMA, 2015, 313(9): 926-935. |
| [3] | Molinaro E, Romei C, Biagini A, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies[J]. Nat Rev Endocrinol, 2017, 13(11): 644-660. |
| [4] | Yoo SK, Song YS, Lee EK, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer[J]. Nat Commun, 2019, 10(1): 2764. |
| [5] | Xing M. Molecular pathogenesis and mechanisms of thyroid cancer[J]. Nat Rev Cancer, 2013, 13(3): 184-199. |
| [6] | Ye L, Zhou X, Huang F, et al. The genetic landscape of benign thyroid nodules revealed by whole exome and transcriptome sequencing[J]. Nat Commun, 2017, 8: 15533. |
| [7] | Parma J, Duprez L, Van Sande J, et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas[J]. Nature, 1993, 365(6447): 649-651. |
| [8] | Paschke R. Molecular pathogenesis of nodular goiter[J]. Langenbecks Arch Surg, 2011, 396(8): 1127-1136. |
| [9] | Shi X, Sun Y, Shen C, et al. Integrated proteogenomic characterization of medullary thyroid carcinoma[J]. Cell Discov, 2022, 8(1): 120. |
| [10] | Gupta N, Dasyam AK, Carty SE, et al. RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers[J]. J Clin Endocrinol Metab, 2013, 98(5): E914-E922. |
| [11] | Guan H, Toraldo G, Cerda S, et al. Utilities of RAS mutations in preoperative fine needle biopsies for decision making for thyroid nodule management[J]. Thyroid, 2020, 30(4): 536-547. |
| [12] | Marcadis AR, Valderrabano P, Ho AS, et al. Interinstitutional variation in predictive value of the ThyroSeq v2 genomic classifier for cytologically indeterminate thyroid nodules[J]. Surgery, 2019, 165(1): 17-24. |
| [13] | Ye L, Santarpia L, Gagel RF. The evolving field of tyrosine kinase inhibitors in the treatment of endocrine tumors[J]. Endocr Rev, 2010, 31(4): 578-599. |
| [14] | Subbiah V, Hu MI, Wirth LJ, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study[J]. Lancet Diabetes Endocrinol, 2021, 9(8): 491-501. |
| [15] | Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children[J]. N Engl J Med, 2018, 378(8): 731-739. |
| [16] | Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma[J]. Cell, 2014, 159(3): 676-690. |
| [17] | 中华医学会内分泌学分会中华医学会, 外科学分会甲状腺及代谢外科学组, 中国抗癌协会头颈肿瘤专业委员会, 等. 甲状腺结节和分化型甲状腺癌诊治指南(第二版)(2023版)[J]. 中华内分泌代谢杂志, 2023, 39(3): 181-226. |
/
| 〈 |
|
〉 |