Wave propagation in thermoelastic solids has been extensively studied in the literature. It has major relevance for its usage in non-destructive testing of composite structures used in aviation, spacecraft and other technical applications. Since the nineteenth century, several researchers have explored wave propagation in the context of various thermoelastic theories. Rayleigh
[9] discovered a new form of surface wave that propagates slightly faster thanthe shear wave speed and include both longitudinal as well as transverse motions. Rayleigh's work considered the surface as an infinite plane and found that wave's velocity do not depend upon wavelength in the absence of gravity. Abd-Alla et al.
[10] analyzed the influence of initial stress and gravity on the proliferation of Rayleigh waves in magneto-thermoelastic medium. Abo-Dahab
[11] analyzed the effect of initial stress and gravity on surface wave propagation in an orthotropic medium. Biswas and Abo-Dahab
[12] examined the influence of magnetic field and initial stress on Rayleigh wave progression in thermoelastic medium. Biswas et al.
[13] examined the Rayleigh wave proliferation in orthotropic half apace with Three Phase Lag (TPL) model. Biswas and Mukhopadhayay
[14] solved the basic equations of Three Phase Lag (TPL) model for homogeneous orthotropic thermoelastic medium with eigen expansion method. Kaur and Lata
[15] investigated the behaviour of circular plate loaded with ring in isotropic medium with and without dissipation of energy at two temperature. Sheokand et al.
[16] demonstrated the influence of rotation, phase lag and fibre reinforcement on the propagation of plane wave in the context of Three Phase Lag (TPL) model. Singh et al.
[17] used eigen value and Honig-Hirdes methods to solve the basic equations of Three Phase Lag (TPL) model. Sharma and Kumari
[18] studied the Rayleigh wave propagation in context of generalized thermoelasticity with two temperature. Abd-Alla et al.
[19] explored the rotational and gravitational effect on magneto thermoelastic solid having heat source on its boundry. Biswas
[20] compared the effects of thermal shock on an infinite thermoelastic body between Lord-Shulman (L-S) model, Green-Nagdhi (GN-III) model and Three Phase Lag (TPL) model using normal mode analysis. The authors observed that thermoelastic deformation is more compatible with Lord-Shulman (L-S) than Three Phase Lag (TPL) model. Singh et al.
[21] studied the propagation of Rayleigh wave in reference to Three phase lag (TPL) model with two temperature. Singh and Kumari
[22] analyzed the influence of gravity and initial stress on Rayleigh wave propagation in purview of Three Phase Lag (TPL) model with two temperature theory. Abo-Dahab et al.
[23] studied the effect of electro-magnetic field on deformation of micro-polar thermoelastic medium in terms of four thermoelastic models. Singh et al.
[24] solved the basic equations of micro-polar thermoelasticity with impedance boundry conditions in specilized plane for the reflection of plane waves. Sharma
[25] demonstrated the influence of initial stress and gravity on polarization and phase velocity of Rayleigh wave propagation in orthotropic solid.