Original article

Common coupled fixed point theorem for two pairs compatible and sub-sequentially continuous mapping

  • Abu-Donia H.M. a ,
  • S. Bakry Mona b ,
  • Atia H.A. a ,
  • M.A. Khater Omnia c ,
  • A.M. Attia Raghda , d
Expand
  • a Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
  • b Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
  • c Department of Basic Science, Zagazig Higher Institute of Engineering and Technology, Zagazig, Egypt
  • d Department of Basic Science, Higher Technological Institute 10th of Ramadan City, El Sharqia 44634, Egypt

Received date: 2022-03-27

  Revised date: 2022-04-08

  Accepted date: 2022-04-11

  Online published: 2022-04-18

Abstract

This study establishes a common coupled fixed point for two pairs of compatible and sequentially continuous mappings in the intuitionistic fuzzy metric space that satisfy the Ï• -contractive conditions. Many basic definitions and theorems have been used from some recent scientific papers about the binary operator, t-norm, t-conorm, intuitionistic fuzzy metric space, and compatible mapping for reaching to the paper's purpose.

Highlights

● Coupled Fixed Point Theorems

● Contractive Condition

● Intuitionistic Fuzzy Metric Spaces.

Cite this article

Abu-Donia H.M. , S. Bakry Mona , Atia H.A. , M.A. Khater Omnia , A.M. Attia Raghda . Common coupled fixed point theorem for two pairs compatible and sub-sequentially continuous mapping[J]. Journal of Ocean Engineering and Science, 2024 , 9(4) : 401 -407 . DOI: 10.1016/j.joes.2022.04.009

1. Introduction

In nonlinear analysis, fixed point theory is one of the most powerful and productive methods [1]. The fixed-point theory may be traced back to the Banach contraction principle [2]. Mathematicians often rely on it to solve existence issues in various fields [3]. The Banach contraction concept has been widely generalized [4]. By manipulating distances between points using a specific control function, it is possible to determine the existence and uniqueness of fixed points for self-maps on a metric space. Khan et al. first developed these control functions, which have since been used in a variety of papers, including one in which several fixed-point theorems were examined using these varying distance functions [5], [6]. Recent research suggests that studying metric spaces with partial ordering might help relax the contraction property constraints [7]. In the early days, Ran and Reurings pioneered this method by using it to solve matrix problems [8]. Periodic boundary value problems for ordinary differential equations were then included, and the technique was further developed (ODEs) [9], [10].
Functional analysis is a field of mathematics that deals with studying vector spaces with some limit-related structure (e. g., inner product, norm, topology, etc.) and linear functions created on these spaces that properly obey these structures [11], [12]. The history of this field may be traced back to the study of formulation characteristics of transformations, operators between function spaces and spaces of functions [13], [14], [15]. Integral and differential equations demonstrate the significance of this field of research [16], [17], [18], [19], [20].
It was Zadeh who initially coined the term “fuzzy sets” [21]. In many cases, rather than being stochastic, the nature of uncertainty in the behavior of given system processes is fuzzy [22]. Numerous researchers have recently shown an interest in studying fuzzy initial value issues in their theoretical framework [23]. Fuzzy derivatives were first proposed by Chang and Zadeh [24] and are now widely accepted. Dubosi and Prade [3] introduced the extension idea [25]. Recent work established the differential and integral calculus for fuzzy-set-valued functions [26].
In this context, our study proves some common coupled fixed point theorems for mappings under ϕ -contractive condition on intuitionistic fuzzy metric space under compatible and subsequently continuous mappings.
The rest sections in our study is ordered as following; Section 2 gives some basic definitions and examples of t-norm, t-conorm, intuitionistic fuzzy metric space (Ξ ), and complete intuitionistic fuzzy metric space (cΞ ). Section 3 demonstrates the main results of our study. Section 4 gives the conclusion of the whole study.

2. Basic employed definitions

In this section, some basic definitions and examples of t-norm, t-conorm, intuitionistic fuzzy metric space (Ξ ), and complete intuitionistic fuzzy metric space (cΞ ) are given as following

Definition 2.1

A binary operator (*,):[0,1]×[0,1][0,1] are continuous t-norm and t-conorm; respectively if they satisfy the following conditions [27]
{Thesetwooperatorarecommutative,associative,andcontinuous.ϱ[0,1]{ϱ*1=ϱ,ϱ0=ϱ.ϱ1,ϱ2,ϱ3,ϱ4[0,1]whereϱ1ϱ3&ϱ2ϱ4,weget{ϱ1*ϱ2ϱ3*ϱ4,ϱ1ϱ2ϱ3ϱ4.

Example 2.1

ς,τ[0,1]
where the following binary operators (*,):[0,1]×[0,1][0,1] , represent t-norm and t-conorm; respectively, we get
{ς*τ={min{ς,τ},ς·τ,max{0,ς+τ1}.ςτ={max{ς,τ},ς+τς·τ,min{ς+τ,1}.

Definition 2.2

Let Ξ=(X,M,N,*,) is an intuitionistic fuzzy metric space where X,(M,N),*, denote respectively an arbitrary set, fuzzy sets on X×X×[0,) , a continuous t -norm, and a continuous t -conorm, satisfy the following conditions [28]
1. M(ζ1,ζ2,t)+N(ζ1,ζ2,t)1 , ζ1,ζ2X and t>0 ,
2. M(ζ1,ζ2,0)=0 , ζ1,ζ2X,
3. M(ζ1,ζ2,t)=1 , ζ1,ζ2X and t>0 ζ1=ζ2 ,
4. M(ζ1,ζ2,t)=M(ζ2,ζ1,t), ζ1,ζ2X and t>0 ,
5. M(ζ1,ζ2,t)*M(ζ2,ζ3,s)M(ζ1,ζ3,t+s) , ζ1,ζ2,ζ3X and t,s>0 ,
6. M(ζ1,ζ2,·):[0,)[0,1] is left continuous, ζ1,ζ2,X ,
7. limtM(ζ1,ζ2,t)=1 , ζ1,ζ2X and t>0 ,
8. N(ζ1,ζ2,0)=1 , ζ1,ζ2X ,
9. N(ζ1,ζ2,t)=0 , ζ1,ζ2X and t>0 ζ1=ζ2 ,
10. N(ζ1,ζ2,t)=N(ζ2,ζ1,t) , ζ1,ζ2X and t>0 ,
11. N(ζ1,ζ2,t)N(ζ2,ζ3,s)N(ζ1,ζ3,t+s) , ζ1,ζ2,ζ3X and t,s>0 ,
12. N(ζ1,ζ2,·:[0,)[0,1] is right continuous, ζ1,ζ2,X ,
13. limtN(ζ1,ζ2,t)=0 , ζ1,ζ2X and t>0 .
Consequently, (M,N) is called an intuitionistic fuzzy metric space. In this case, the functions M=M(ζ1,ζ2,t),N=N(ζ1,ζ2,t) represent the degree of nearness and non-nearness between ζ1,ζ2 with respect to t .

Definition 2.3

let Ξ is complete if and only if every Cauchy sequence in X is convergent where [29]
1. t>0 and α,βαo , a sequence {Sα} in X is a Cauchy sequence if for any ϵ>0 there exists αoN where M(Sα,Sβ,t)>1ϵ and N(Sα,Sβ,t)<ϵ .
2. t>0 , a sequence {Sα} in X is a convergent to a point sX where limαM(Sα,s,t)=1 and limαN(Sα,s,t)=0 .

Definition 2.4

A t-norm Υ is said to be of H -type if the family of functions Υβ(t)β=1 equicontinuous at t=1 [30], where sup0<t<1Υ(t,t)=1,Υ1(t)=tΥt , Υβ+1(t)=tΥ(Υβ(t)),β=1,2,,t[0,1] . Additionally, the t-norm ΥM=min is an example of t-norm of H -type, but there are some other t-norms Υ of H-type.

Definition 2.5

A t-conorm Λ is said to be of H -type if the family of functions Λβ(t)β=1 equicontinuous at t=0 [31], where inf0<t<1Λ(t,t)=0,Λ1(t)=tΛt , Λβ+1(t)=tΛ(Λβ(t)),m=1,2,,t[0,1] . Moreover, the t-conorm ΛM=max is an example of t-conorm of H -type.

Example 2.2

Let X={1α;α=1,2,3,}{0} and let * be the continuous t -norm and be the continuous t -conorm defined by ς*τ=ςτ and ςτ=min{1,ς+τ} , ς,τ[0,1] for each ζ1,ζ2Xandt>0 , define (M,N) by M(ζ1,ζ2,t)={0:t=0tt+d(ζ1,ζ2):t>0 , N(x,y,t)={1:t=0d(ζ1,ζ2)t+d(ζ1,ζ2):t>0 .
Thus, (X,M,N,*,) is an intuitionistic fuzzy metric space.

Remark 2.1

It easy to prove that if Sαζ1 , Qαζ2 , tαt , we get limαM(Sα,Qα,tα)=M(ζ1,ζ2,t) and limαN(Sα,Qα,tα)=N(ζ1,ζ2,t).

Definition 2.6

Let Φ contractive conditions where Φ={ϕ:R+R+} such that ϕΦ satisfies the following conditions [32]:
i) ϕ is non decreasing;
ii) ϕ is continuous;
iii) n=0ϕn(t)< , t>0,
where ϕn+1(t)=ϕ(ϕn(t)),nN .
Clearly if ϕΦ, then ϕ(t)<t , t>0.

Lemma 2.1

Let ϕΦ [32] . Thus t>0 it holds that limnϕn(t)=0 , where ϕn(t) denote the n-th iteration of ϕ.

Lemma 2.2

Let Ξ be an intuitionistic fuzzy metric space where *, respectively are continuous t-norm and continuous t-conorm of H -type [33] . If there exists ϕΦ such that M(ζ1,ζ2,ϕ(t))M(ζ1,ζ2,t) and N(ζ1,ζ2,ϕ(t))N(ζ1,ζ2,t) for all t>0 . Then ζ1=ζ2.

Definition 2.7

Let Ξ be an intuitionistic fuzzy metric space [34]. (M,N) is said to be n-property on x2×(0,) where limα{M(ζ1,ζ2,knt)}n=1 and limn{N(ζ1,ζ2,knt)}n=0 , whenever ζ1,ζ2X,k>1 and nN .

Definition 2.8

An element (ζ1,ζ2)X×X is called a coupled fixed point (CFP), a coupled coincidence point (CCP), a common coupled fixed point (CCFP), and a common fixed point (CFP) if and only if satisfies the next conditions [35]
{ACFPofthemappingF:X×XX,{F(ζ1,ζ2)=ζ1,F(ζ2,ζ1)=ζ2.ACCPofthemapping{F:X×XX,G:XX,{F(ζ1,ζ2)=G(ζ1),F(ζ2,ζ1)=G(ζ2).ACCFPofthemapping{F:X×XX,G:XX,{ζ1=F(ζ1,ζ2)=G(ζ1),ζ2=F(ζ2,ζ1)=G(ζ2).ACFPofthemapping{F:X×XX,G:XX,ζ1=G(ζ1)=F(ζ1,ζ1).

Definition 2.9

The mappings F:X×XX and G:XX are called compatible when Sα,QαX if and only if satisfy the following conditions [36]
{limαM(GF(Sα,Qα),F(GSα,GQα),t)=1,limαN(GF(Sα,Qα),F(GSα,GQα),t)=0,limαM(GF(Qα,Sα),F(GQα,GSα),t)=1,limαN(GF(Qα,Sα),F(GQα,GSα),t)=0,where,{limαF(Sα,Qα)=limαGSα=λ,limαF(Qα,Sα)=limαGQα=μ,
where Sα,Qα are two sequence in X and λ,μX .

Definition 2.10

The mappings F:X×XX and G:XX are sub-sequentially continuous if and only if there exist sequence Sα,QαX such that [37]
{limαF(Sα,Qα)=limαGSα=λ,limαF(Qα,Sα)=limαGQα=μ,where,{limαF(GSα,GQα)=F(λ,μ),limαF(GQα,GSα)=F(μ,λ),limαGF(Sα,Qα)=Gλ,limαGF(Qα,Sα)=Gμ.

3. Main results

In this section, we prescribe a common coupled fixed point in intuitionistic fuzzy metric space for two pairs of compatible and sequentially continuous mappings that fulfill the ϕ -contractive criteria.

Theorem 3.1

Let Ξ be an intuitionistic fuzzy metric space where * is continuous t-norm of H -type and is continuous t-conorm of H -type such that limtM(ζ1,ζ2,t)=1 and limtN(ζ1,ζ2,t)=0, ζ1,ζ2X . Let A,B:X×XX and S,T:XX be four mappings such that
a) The pairs (A,S) and (B,T) are compatible and sub-sequentially continuous.
b) There exists ϕΦ such that
{M(A(ζ1,ζ2),B(υ,ω),ϕ(t))M(Sζ1,Tυ,t)*M(Sζ2,Tω,t),N(A(ζ1,ζ2),B(υ,ω),ϕ(t))N(Sζ1,Tυ,t)*N(Sζ2,Tω,t),
ζ1,ζ2,υ,ωX and t>0.
Then there exist a unique point φX such that φ=Sφ=Tφ=A(φ,φ)=B(φ,φ).

Proof

Since the mappings A and S are sub-sequentially continuous and compatible. Thus, there exists sequence
{limαA(Sα,Qα)=limαSSα=φ,limαA(Sα,Qα)=limαSQα=ψ,limαM(A(SSα,SQα),SA(Sα,Qα),t)=1,limαM(A(SQα,SSα),SA(Qα,Sα),t)=1,limαN(A(SSα,SQα),SA(Sα,Qα),t)=0,limαN(A(SQα,SSα),SA(Qα,Sα),t)=0.
φ,ψX . That grantees leading to A(φ,ψ)=Sφ and A(ψ,φ)=Sψ. Using same technique with respect to (B,T) , there exist sequence {Sα} and {Qα} in X leads to (φ,ψ)X×X is couple coincidence point of (A,S) and (φ,ψ)X×X is couple coincidence point of the pair (B,T) . □
Now. Suppose (φ,ψ)=(φ,ψ) leads to φ=φ and ψ=ψ. Consequently for S>0,T>0, where (1T)*(1T)**(1T)k1S and TTTkS, kN.
Additionally, M(ζ1,ζ2,·),N(ζ1,ζ2,·) are continuous, thus, it satisfies the following conditions
{{limtM(ζ1,ζ2,t)=1,limtN(ζ1,ζ2,t)=0,ζ1,ζ2X{M(φ,φ,to)1S,M(ψ,ψ,to)1S,N(φ,φ,to)S,N(ψ,ψ,to)S.t0>0.
On the other hand, using the Φ contractive conditions (2.6), leads to α=1ϕα(to)< . Consequently, t>0,α0N,t>k=αoϕk(to),ζ1=Sα,ζ2=Qα,υ=Sα,ω=Qα&ζ1=Qα,ζ2=Sα,υ=Qα,ω=Sα
which leads to {M(A(Sα,Qα),B(Sα,Qα),ϕ(to))M(SQα,TQα,t)*M(SQα,TQα,t),M(A(Qα,Sα),B(Qα,Sα),ϕ(to))M(SQα,TQα,to)*M(SSα,TSα,to),N(A(Sα,Qα),B(Sα,Qα),ϕ(to))N(SSα,TSα,t)N(SQα,TQα,t),N(A(Qα,Sα),B(Qα,Sα),ϕ(to))N(SQα,TQα,to)N(SSα,TSα,to).
While, for α , we get
{M(φ,φ,ϕ(to))M(φ,φ,to)*M(ψ,ψ,to),N(φ,φ,ϕ(to))N(φ,φ,to)N(ψ,ψ,to),M(ψ,ψ,ϕ(to))M(ψ,ψ,to)*M(φ,φ,to),N(ψ,ψ,ϕ(to))N(ψ,ψ,to)N(φ,φ,to).
Consequently, we get {M(φ,φ,ϕ(to))*M(ψ,ψ,ϕ(to))(M(φ,φ,to))2*(M(ψ,ψ,to))2,N(φ,φ,ϕ(to))N(ψ,ψ,ϕ(to))(N(φ,φ,to))2(N(ψ,ψ,to))2.
Using same technique αN , we get
{{M(φ,φ,ϕα(to))*M(ψ,ψ,ϕα(to))(M(φ,φ,ϕα1(to)))2*(M(ψ,ψ,ϕα1(to)))2(M(φ,φ,to))2α*(M(ψ,ψ,to))2α,{N(φ,φ,ϕα(to))N(ψ,ψ,ϕα(to))(N(φ,φ,ϕα1(to)))2(N(ψ,ψ,ϕα1(to)))2(N(φ,φ,to))2α(N(ψ,ψ,to))2α.
That leads to obtain
M(φ,φ,t)*M(ψ,ψ,t)[M(φ,φ,k=αoϕk(to))]*[M(ψ,ψ,k=αoϕk(to))][M(φ,φ,ϕαo(to))]*[M(ψ,ψ,ϕαo(to))][M(φ,φ,to)]2αo*[M(ψ,ψ,to)]2αo(1T)*(1T)**(1T)2αo1S,
N(φ,φ,t)N(ψ,ψ,t)[N(φ,φ,k=αoϕk(to))][N(ψ,ψ,k=αoϕk(to))][N(φ,φ,ϕαo(to))][N(ψ,ψ,ϕαo(to))][N(φ,φ,to)]2αo[N(ψ,ψ,to)]2αoTTT2αoS.
Additionally, S>0,t>0 we get
{M(φ,φ,t)*M(ψ,ψ,t)1S,N(φ,φ,t)N(ψ,ψ,t)S,φ=φ,ψ=ψ.
Moreover, we obtain
A(φ,ψ)=Sφ&A(ψ,φ)=Sψ,B(φ,ψ)=Tφ&B(ψ,φ)=Tψ.
Now, we are going to prove {Sφ=Tφ,Sψ=Tψ, by employing the intuitionistic fuzzy metric space's characterizations as following:
S>0,kNT>0, such that
{(1T)*(1T)**(1T)k1S,TTTkS,
where M(ζ1,ζ2,·),N(ζ1,ζ2,·) are continuous. Consequently, we get
{limtM(ζ1,ζ2,t)=1,limtN(ζ1,ζ2,t)=0, ζ1,ζ2X,to>0 such that
{M(Sφ,Tφ,to)1S&N(Sφ,Tφ,to)S,M(Sψ,Tψ,to)1S&N(Sψ,Tψ,to)S.
On the other hand, using the ϕ -contractive conditions leads to α=1ϕα(to)< and t>k=αoϕk(to) . Additionally, for ζ1=υ=φ,ζ2=ω=ψ&ζ1=υ=ψ,ζ2=ω=φ respectively, we get
{M(A(φ,ψ),B(φ,ψ),ϕ(to))M(Sφ,Tφ,to)*M(Sψ,Tψ,to),M(A(ψ,φ),B(ψ,φ),ϕ(to))M(Sψ,Tψ,to)*M(Sφ,Tφ,to).N(A(φ,ψ),B(φ,ψ),ϕ(to))N(Sφ,Tφ,to)N(Sψ,Tψ,to),N(A(ψ,φ),B(ψ,φ),ϕ(to))N(Sψ,Tψ,to)N(Sφ,Tφ,to).M(Sφ,Tφ,ϕ(to))M(Sφ,Tφ,to)*M(Sψ,Tψ,to),M(Sψ,Tψ,ϕ(to))M(Sψ,Tψ,to)*M(Sφ,Tφ,to).N(Sφ,Tφ,ϕ(to))N(Sφ,Tφ,to)N(Sψ,Tψ,to),N(Sψ,Tψ,ϕ(to))N(Sψ,Tψ,to)N(Sφ,Tφ,to).
Based on the above inequalities, we can conclude {M(Sφ,Tφ,ϕ(to))*M(Sψ,Tψ,ϕ(to))[M(Sφ,Tφ,to)]2*[M(Sψ,Tψ,to)]2,N(Sφ,Tφ,ϕ(to))N(Sψ,Tψ,ϕ(to))[N(Sφ,Tφ,to)]2[N(Sψ,Tψ,to)]2.
Repeating this process α -times where αN , we get
M(Sφ,Tφ,ϕα(to))*M(Sψ,Tψ,ϕα(to))[M(Sφ,Tφ,ϕα1(to))]2*[M(Sψ,Tψ,ϕα1(to))]2[M(Sφ,Tφ,to)]2α*[M(Sψ,Tψ,to)]2α.
N(Sφ,Tφ,ϕα(to))N(Sψ,Tψ,ϕα(to))[N(Sφ,Tφ,ϕα1(to))]2[N(Sψ,Tψ,ϕα1(to))]2[N(Sφ,Tφ,to)]2α[N(Sψ,Tψ,to)]2α.
Thus, we get {{M(Sφ,Tφ,t)*M(Sψ,Tψ,t)[M(Sφ,Tφ,k=αoϕk(to))]*[M(Sψ,Tψ,k=noϕk(to))][M(Sφ,Tφ,ϕαo(to))]*[M(Sψ,Tψ,ϕno(to))][M(Sφ,Tφ,to)]2αo*[M(Sψ,Tψ,to)]2αo(1T)*(1T)**(1T)1S.{N(Sφ,Tφ,t)N(Sψ,Tψ,t)[N(Sφ,Tφ,k=αoϕk(to))][N(Sψ,Tψ,k=αoϕk(to))][N(Sφ,Tφ,ϕαo(to))][N(Sψ,Tψ,ϕαo(to))][N(Sφ,Tφ,to)]2αo[N(Sψ,Tψ,to)]2αoTTTS.
Consequently, we get for (t>0);
{M(Sφ,Tφ,t)*M(Sψ,Tψ,t)1S,N(Sφ,Tφ,t)N(Sψ,Tψ,t)S,Sφ=Tφ=A(φ,ψ)=B(φ,ψ),Sψ=Tψ=A(ψ,φ)=B(ψ,φ).
Now, we are going to prove the following conditions {Sφ=φ,Sψ=ψ.
Since, M(ζ1,ζ2,·),N(ζ1,ζ2,·) are continuous which grantee {limtM(ζ1,ζ2,t)=1,limtN(ζ1,ζ2,t)=0, ζ1,ζ2X,to>0 , such that M(Sφ,φ,to)1S,&N(Sφ,φ,to)S,M(Sψ,ψ,to)1S,&N(Sψ,ψ,to)S.
Employing the Φ contractive conditions (2.6) along with ζ1=φ,ζ2=ψ,υ=Sα,ω=Qα&ζ1=ψ,ζ2=φ,υ=Qαandω=Sα,
leads to {M(A(φ,ψ),B(Sα,Qα),ϕ(to))M(Sφ,TSα,to)*M(Sψ,TQα,to),N(A(φ,ψ),B(Sα,Qα),ϕ(to))N(Sφ,TSα,to)N(Sψ,TQα,to).
Suppose, α,
refers to M(Sφ,φ,ϕ(to))M(Sφ,φ,to)*M(Sψ,ψ,to),N(Sφ,φ,ϕ(to))N(Sφ,φ,to)N(Sψ,ψ,to).
Similarly, we can get. M(Sψ,ψ,ϕ(to))M(Sψ,ψ,to)*M(Sφ,φ,to),N(Sψ,ψ,ϕ(to))N(Sψ,ψ,to)N(Sφ,φ,to).
That obtains M(Sφ,φ,ϕ(to))*M(Sψ,ψ,ϕ(to))[M(Sφ,φ,to)]2*[M(Sψ,ψ,to)]2,N(Sφ,φ,ϕ(to))N(Sψ,ψ,ϕ(to))[N(Sφ,φ,to)]2[N(Sψ,ψ,to)]2.
Repeating same style for all αN, gets
{{M(Sφ,φ,ϕα(to))*M(Sψ,ψ,ϕα(to))[M(Sφ,φ,ϕα1(to))]2*[M(Sψ,ψ,ϕα1(to))]2[M(Sφ,φ,to)]2α*[M(Sψ,ψ,to)]2α.{N(Sφ,φ,ϕα(to))N(Sψ,ψ,ϕα(to))[N(Sφ,φ,ϕα1(to))]2[N(Sψ,ψ,ϕα1(to))]2,[N(Sφ,φ,to)]2α[N(Sψ,ψ,to)]2α.
Consequently, we get
{{M(Sφ,φ,t)*M(Sψ,ψ,t)[M(Sφ,φ,k=α0ϕk(to))]*[M(Sψ,ψ,k=α0ϕk(to))][M(Sφ,φ,ϕα0(to))]*[M(Sψ,ψ,ϕα0(to))][M(Sφ,φ,to)]2α0*[M(Sψ,ψ,to)]2α01S,{N(Sφ,φ,t)N(Sψ,ψ,t)[N(Sφ,φ,k=α0ϕk(to))][N(Sψ,ψ,k=α0ϕk(to))][N(Sφ,φ,ϕα0(to))][N(Sψ,ψ,ϕα0(to))][N(Sφ,φ,to)]2α0[N(Sψ,ψ,to)]2α0S.
Thus, Sφ=φ and Sψ=ψ. Therefore
Sφ=Tφ=A(φ,ψ)=B(φ,ψ)=φ and Sψ=Tψ=A(ψ,φ)=B(ψ,φ)=ψ .
Finally, we show φ=ψ Since M(ζ1,ζ2,·),N(ζ1,ζ2,·) are continuous which means {limtM(ζ1,ζ2,t)=1,limtN(ζ1,ζ2,t)=0, for all ζ1,ζ2X , to>0 such that M(φ,ψ,to)1S&N(φ,ψ,to)S.
Employing the Φ contractive conditions (2.6) along with ζ1=ω=φ,ζ2=υ=ψ, leads to
{M(A(φ,ψ),B(ψ,φ)ϕ(to))M(Sφ,Tψ,to)*M(Sψ,Tφ,to),M(φ,ψ,ϕ(to))M(φ,ψ,to)*M(ψ,φ,to),N(A(φ,ψ),B(ψ,φ)ϕ(to))N(Sφ,Tψ,to)N(Sψ,Tφ,to),N(φ,ψ,ϕ(to))N(φ,ψ,to)N(ψ,φ,to).
Consequently, we obtain {{M(φ,ψ,t)[M(φ,ψ,k=αo)][M(φ,ψ,ϕαo(to))][M(φ,ψ,to)]2αo1S,{N(φ,ψ,t)[N(φ,ψ,k=αo)][N(φ,ψ,ϕαo(to))][N(φ,ψ,to)]2αoS.
This implies φ=ψ , therefore φ=Sφ=Tφ=A(φ,φ)=B(φ,φ) . then φ is a unique fixed point of A,B,S and T .

4. Conclusion

This study has successfully mentioned some fundamental theorem, lemma, and definitions for some essential mappings such as a binary operator, compatible and sequentially continuous mappings that are considered basic icons in intuitionistic fuzzy metric spaces. Additionally, we have used these icons for prescribing a common coupled fixed point in intuitionistic fuzzy metric space for two pairs of compatible and sequentially continuous mappings that fulfill the ϕ -contractive criteria.

Authors' contribution

All the study has been done by the author himself.

Funding

No fund has been received.

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The used code of this study is available from the corresponding author upon reasonable request.
Declaration of Competing Interest
There is no conflict of interest.

Acknowledgment

We greatly thank the journal stuff.

[1]
X. Wu, T. Wang, P. Liu, G. Deniz Cayli, X. Zhang. arXiv e-prints (2021)

1.
arXiv:2111. 12677

2.
[ 2 J.-W. Cao, S. Mukherjee, T. Pham, Y. Wang, T. Wang, T. Zhang, X. Jiang, H.-J. Tang, K.A. Forrest, B. Space, M.J. Zaworotko, K.-J. Chen. Nat Commun, 12 (2021), p. 6507

[3]
Y.-L. Peng, T. Wang, C. Jin, C.-H. Deng, Y. Zhao, W. Liu, K.A. Forrest, R. Krishna, Y. Chen, T. Pham, B. Space, P. Cheng, M.J. Zaworotko,Z. Zhang. Nat Commun, 12 (2021), p. 5768

[4]
M. Shivanna, K.-i. Otake, B.-Q. Song, L.M. Wyk, Q.-Y. Yang, N. Kumar, W.K. Feldmann, T. Pham, S. Suepaul, B. Space, L.J. Barbour, S. Kitagawa, M.J. Zaworotko. Angewandte Chemie, 133 (37) (2021), pp. 20546-20553

[5]
S. Mukherjee, N. Kumar, A.A. Bezrukov, K. Tan, T. Pham, K.A. Forrest, K.A. Oyekan, O.T. Qazvini, D.G. Madden, B. Space, M.J. Zaworotko. Angewandte Chemie, 133 (19) (2021), pp. 10997-11004

[6]
Z. Niu, X. Cui, T. Pham, G. Verma, P.C. Lan, C. Shan, H. Xing, K.A. Forrest, S. Suepaul, B. Space, A. Nafady, A.M. Al-Enizi, S. Ma. Angewandte Chemie, 133 (10) (2021), DOI: 3. ange.202181062 4.

[ Z. Niu, X. Cui, T. Pham, G. Verma, P.C. Lan, C. Shan, H. Xing, K.A. Forrest, S. Suepaul, B. Space, A. Nafady, A.M. Al-Enizi, S. Ma. Angewandte Chemie, 133 (10) (2021), DOI: 3. ange.202181062 4. [7] Z. Niu, X. Cui, T. Pham, G. Verma, P.C. Lan, C. Shan, H. Xing, K.A. Forrest, S. Suepaul, B. Space, A. Nafady, A.M. Al-Enizi, S. Ma. Angewandte Chemie, 133 (10) (2021), pp. 5343-5348, DOI: ]

[8]
G. Verma, S. Kumar, H. Vardhan, J. Ren, Z. Niu, T. Pham, L. Wojtas, S. Butikofer, J.C. Echeverria Garcia, Y.-S. Chen, B. Space, S. Ma. Nano Res, 14 (2) (2021), pp. 512-517

[9]
V. Sreekanth, L.P. Clark, B. Bekbulat, M. Baum, S. Yang, L.M.P. Baylon, T.R. Gould, T. Larson, E. Seto, C.D. Space, J.D. Marshall.AGU Fall Meeting Abstracts, volume 2020 (2020), pp. A220-0003

[10]
S. Mukherjee, S. Chen, A.A. Bezrukov, M. Mostrom, V.V. Terskikh, D. Franz, S.-Q. Wang, A. Kumar, M. Chen, B. Space, Y. Huang, M.J. Zaworotko. Angewandte Chemie, 132 (37) (2020), pp. 16322-16328

[11]
M.M. Khater, S. Muhammad, A. Al-Ghamdi, M. Higazy. Journal of Ocean Engineering and Science (2022)

[12]
M.M. Khater. Journal of Ocean Engineering and Science (2022)

[13]
M.F. Alotaibi, M. Omri, E. Khalil, S. Abdel-Khalek, J. Bouslimi, M.M. Khater. Journal of Ocean Engineering and Science (2022)

[14]
M.M. Khater, S. Muhammad, A. Al-Ghamdi, M. Higazy. Journal of Ocean Engineering and Science (2022)

[15]
M.M. Khater. Journal of Ocean Engineering and Science (2022)

[16]
F. Wang, S.A. Salama, M.M. Khater. Journal of Ocean Engineering and Science (2022)

[17]
F. Wang, S. Muhammad, A. Al-Ghamdi, M. Higazy, M.M. Khater. Journal of Ocean Engineering and Science (2022)

[18]
F. Wang, M.M. Khater. Journal of Ocean Engineering and Science (2022)

[19]
M.M. Khater. Chaos, Solitons & Fractals, 157 (2022), p. 111970

[20]
M.M. Khater. Mod. Phys. Lett. B (2022), p. 2150614

[21]
Q. Kiran, H. Khatoon.International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2018), American Institute of Physics Conference Series, volume 2116 (2019), p. 190006

[22]
Y.-L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K.-J. Chen, K.A. Forrest, B. Space, P. Cheng, M.J. Zaworotko, Z. Zhang. Angewandte Chemie, 130 (34) (2018), pp. 11137-11141

[23]
Q.-Y. Yang, P. Lama, S. Sen, M. Lusi, K.-J. Chen, W.-Y. Gao, M. Shivanna, T. Pham, N. Hosono, S. Kusaka, I. Perry John J., S. Ma, B. Space, L.J. Barbour, S. Kitagawa, M.J. Zaworotko. Angewandte Chemie, 130 (20) (2018), pp. 5786-5791

[24]
M. Shivanna, Q.-Y. Yang, A. Bajpai, S. Sen, N. Hosono, S. Kusaka, T. Pham, K.A. Forrest, B. Space, S. Kitagawa, M.J. Zaworotko.Sci Adv, 4 (4) (2018), p. eaaq1636

[25]
H. He, Q. Sun, W. Gao, J.A. Perman, F. Sun, G. Zhu, B. Aguila, K. Forrest, B. Space, S. Ma. Angewandte Chemie, 130 (17) (2018), pp. 4747-4752

[26]
K.-J. Chen, Q.-Y. Yang, S. Sen, D.G. Madden, A. Kumar, T. Pham, K.A. Forrest, N. Hosono, B. Space, S. Kitagawa, M.J. Zaworotko. Angewandte Chemie, 130 (13) (2018), pp. 3390-3394

[27]
D.M. Franz, Z.E. Dyott, K.A. Forrest, A. Hogan, T. Pham, B. Space. Physical Chemistry Chemical Physics (Incorporating Faraday Transactions), 20 (3) (2018), pp. 1761-1777

[28]
M. Zhang, W. Zhou, T. Pham, K.A. Forrest, W. Liu, Y. He, H. Wu, T. Yildirim, B. Chen, B. Space, Y. Pan, M.J. Zaworotko, J. Bai. Angewandte Chemie, 129 (38) (2017), pp. 11584-11588

[29]
J.L. Belof, B. Space. arXiv e-prints (2017)

5.

6.
[ 30 S. Arora, T. Kumar. Recent Advances in Fundamental and Applied Sciences: RAFAS2016, American Institute of Physics Conference Series, volume 1860 (2017), p. 020050

[31]
K.A. Forrest, T. Pham, B. Space. Physical Chemistry Chemical Physics (Incorporating Faraday Transactions), 19 (43) (2017), pp. 29204-29221

[32]
T. Pham, K.A. Forrest, D.M. Franz, Z. Guo, B. Chen, B. Space. Physical Chemistry Chemical Physics (Incorporating Faraday Transactions), 19 (28) (2017), pp. 18587-18602

[33]
T. Pham, K.A. Forrest, M. Mostrom, J.R. Hunt, H. Furukawa, J. Eckert, B. Space. Physical Chemistry Chemical Physics (Incorporating Faraday Transactions), 19 (20) (2017), pp. 13075-13082

[34]
K.-J. Chen, D.G. Madden, T. Pham, K.A. Forrest, A. Kumar, Q.-Y. Yang, W. Xue, B. Space, I. Perry John J., J.-P. Zhang, X.-M. Chen, M.J. Zaworotko. Angewandte Chemie, 128 (35) (2016), pp. 10424-10428

[35]
M.H. Mohamed, S.K. Elsaidi, T. Pham, K.A. Forrest, H.T. Schaef, A. Hogan, L. Wojtas, W. Xu, B. Space, M.J. Zaworotko, P.K. Thallapally. Angewandte Chemie, 128 (29) (2016), pp. 8425-8429

[36]
T. Pham, K.A. Forrest, B. Space. Physical Chemistry Chemical Physics (Incorporating Faraday Transactions), 18 (31) (2016), pp. 21421-21430

[37]
T. Pham, K.A. Forrest, B. Space, J. Eckert. Physical Chemistry Chemical Physics (Incorporating Faraday Transactions), 18 (26) (2016), pp. 17141-17158

Options
Outlines

/