1. Introduction
2. Preliminaries
2.1. Shehu transform
2.2. Inverse Shehu transform
2.3. Caputo fractional derivative's Shehu transform
2.4. Fuzzy set
2.5. Fuzzy number
2.6. Triangular fuzzy number
2.7. r-cut
2.8. Parametric formulation
3. q-Homotopy analysis Shehu transform method [12]
4. Formulation of atmospheric internal waves model with fractional and fuzzy approach
5. Numerical application of fractional approach using q-HAShTM
6. Numerical application of fuzzy-fractional approach using q-HAShTM
7. Results and discussion
Fig. 1. Surface of $\upsilon (x,t)$ at $\hbar =1$ and n=1. |
Fig. 2. Surface of $v(x,t)$ at $\hbar =1$ and n=1. |
Fig. 3. Surface of $\eta (x,t)$ at $\hbar =1$ and n=1. |
Fig. 4. Plot of solution of $\upsilon (x,t)$ at $\hbar$=−1, n=1 and x=1 for different α with respect to t. |
Fig. 5. Plot of solution of $\upsilon (x,t)$ at α=1, n=1 and x=1 for different $\hbar$ with respect to t. |
Fig. 6. Plot of solution of $v(x,t)$ at $\hbar$=−1, n=1 and x=1 for different α with respect to t. |
Fig. 7. Plot of solution of $v(x,t)$ at α=1, n=1 and x=1 for different $\hbar$ with respect to t. |
Fig. 8. Plot of solution of $\eta (x,t)$ at $\hbar$=−1, n=1 and x=1 for different α with respect to t. |
Fig. 9. Plot of solution of $\eta (x,t)$ at α=1, n=1 and x=1 for different $\hbar$ with respect to t. |
Fig. 10. Plot of $\upsilon (x,t)$, $v(x,t)$ and $\eta (x,t)$ at t=0.1, $\hbar$=−1 and n=1 at different α with respect to x. |
Fig. 11. Plot of $\upsilon (x,t)$, $v(x,t)$ and $\eta (x,t)$ at x=1, $\hbar$=−1 and n=1 at different α with respect to t. |
Table 1. Solution of $\upsilon (x,t)$ for distinct value of $\alpha $ at $\hbar =1$ and n=1. |
x | t | α=0.75 | α=0.87 | α=1 |
---|---|---|---|---|
0.5 | 0.02 | 1.262280393 | 1.212568783 | 1.181592406 |
0.04 | 1.352405802 | 1.274675597 | 1.222863613 | |
0.06 | 1.436654239 | 1.335447263 | 1.265422243 | |
0.08 | 1.518335351 | 1.396086291 | 1.309268293 | |
0.1 | 1.598765045 | 1.457088891 | 1.354401766 | |
1.0 | 0.02 | 1.162106447 | 1.234965137 | 1.267846650 |
0.04 | 0.9896882900 | 1.149232058 | 1.225829166 | |
0.06 | 0.7847083852 | 1.040773233 | 1.170580654 | |
0.08 | 0.5521647164 | 0.9113475703 | 1.102101115 | |
0.1 | 0.2952822323 | 0.7622188522 | 1.020390547 | |
1.5 | 0.02 | 0.8828134901 | 0.8514501594 | 0.8328502944 |
0.04 | 0.9427129742 | 0.8902348932 | 0.8574966874 | |
0.06 | 1.002007355 | 0.9300372020 | 0.8838101477 | |
0.08 | 1.062042570 | 0.9713504106 | 0.9117906749 | |
0.1 | 1.123260490 | 1.014337547 | 0.9414382693 |
Table 2. Solution of $v(x,t)$ for distinct value of $\alpha $ at $\hbar =1$ and n=1. |
x | t | α=0.75 | α=0.87 | α=1 |
---|---|---|---|---|
0.5 | 0.02 | 0.4423886714 | 0.4364455682 | 0.4303802196 |
0.04 | 0.4455538582 | 0.4448691506 | 0.4387994896 | |
0.06 | 0.4402471169 | 0.4484757711 | 0.4452321518 | |
0.08 | 0.4287224660 | 0.4480736325 | 0.4496782061 | |
0.1 | 0.4121096499 | 0.4440977454 | 0.4521376526 | |
1.0 | 0.02 | 0.1728287613 | 0.1589883142 | 0.1509760603 |
0.04 | 0.1998926617 | 0.1760210227 | 0.1615635302 | |
0.06 | 0.2273334058 | 0.1938887516 | 0.1730640592 | |
0.08 | 0.2555909397 | 0.2127541373 | 0.1854776474 | |
0.1 | 0.2847796697 | 0.2326579888 | 0.1988042950 | |
1.5 | 0.02 | 0.03498010538 | 0.03263287775 | 0.03126364031 |
0.04 | 0.03953634197 | 0.03552589404 | 0.03307457015 | |
0.06 | 0.0412220109 | 0.03853996954 | 0.03503090102 | |
0.08 | 0.04882049520 | 0.04170561836 | 0.03713263294 | |
0.1 | 0.05365491810 | 0.04503141929 | 0.03937976589 |
Table 3. Solution of $\eta (x,t)$ for distinct value of $\alpha $ at $\hbar =1$ and n=1. |
x | t | α=0.75 | α=0.87 | α=1 |
---|---|---|---|---|
0.5 | 0.02 | 0.08970267542 | 0.09775697313 | 0.1015159448 |
0.04 | 0.07104193951 | 0.08822701880 | 0.09668804744 | |
0.06 | 0.04918554575 | 0.07642934592 | 0.0905098311 | |
0.08 | 0.2460043040 | 0.06252350902 | 0.08298148188 | |
0.1 | -0.00241995740 | 0.04662948905 | 0.07410281374 | |
1.0 | 0.02 | 0.08302490921 | 0.07776977935 | 0.07460827644 |
0.04 | 0.09291657046 | 0.08428742744 | 0.07880429972 | |
0.06 | 0.1025589122 | 0.09088689944 | 0.08323889468 | |
0.08 | 0.1122128384 | 0.09766350632 | 0.08791206132 | |
0.1 | 0.1219709026 | 0.1046517177 | 0.09282379963 | |
1.5 | 0.02 | 0.02644106489 | 0.02458075523 | 0.02350237409 |
0.04 | 0.03007409727 | 0.02687075129 | 0.02492758007 | |
0.06 | 0.03375302765 | 0.02927013356 | 0.02647420159 | |
0.08 | 0.03753812679 | 0.03180116880 | 0.02814223865 | |
0.1 | 0.04144536717 | 0.03446957201 | 0.02993169123 |
Table 4. Comparison between the solution of q-HAShTM and HAM [20] for $\upsilon (x,t)$, $v(x,t)$ and $\eta (x,t)$ at $\hbar =1$, n=1 and α=1. |
t | x | $\upsilon (x,t)$ | $v(x,t)$ | $\eta (x,t)$ | |||
---|---|---|---|---|---|---|---|
q-HAShTM | HAM | q-HAShTM | HAM | q-HAShTM | HAM. | ||
0.02 | 0.2 | 1.10345 | 1.10026 | 0.31350 | 0.31429 | 0.02743 | 0.02692 |
0.4 | 1.12217 | 1.22755 | 0.44743 | 0.44903 | 0.083092 | 0.08354 | |
0.6 | 1.29362 | 1.29910 | 0.38158 | 0.38186 | 0.10943 | 0.11002 | |
0.8 | 1.27512 | 1.27677 | 0.25593 | 0.25545 | 0.099846 | 0.09996 | |
1.0 | 1.18159 | 1.18095 | 0.15097 | 0.15052 | 0.07460 | 0.07448 | |
0.04 | 0.2 | 1.03947 | 1.02669 | 0.28319 | 0.28633 | 0.02167 | 0.01962 |
0.4 | 1.15555 | 1.17863 | 0.44442 | 0.45081 | 0.07582 | 0.07764 | |
0.6 | 1.27934 | 1.30162 | 0.39661 | 0.39769 | 0.10788 | 0.11023 | |
0.8 | 1.30276 | 1.30933 | 0.27200 | 0.27005 | 0.10311 | 0.10360 | |
1.0 | 1.22286 | 1.22029 | 0.16156 | 0.15974 | 0.07880 | 0.07832 |
Table 5. Lower and Upper solution of $\tilde{\upsilon }(x,t;r,\beta )$, $\tilde{v}(x,t;r,\beta )$ and $\tilde{\eta }(x,t;r,\beta )$ at $\hbar =1$, n=1 and α=1 and r=0.5. |
x | t | $\underset{\scriptscriptstyle-}{\upsilon }(x,t;r,0)$ | $\bar{\upsilon }(x,t;r,1)$ | $\underset{\scriptscriptstyle-}{v}(x,t;r,0)$ | $\bar{v}(x,t;r,1)$ | $\underset{\scriptscriptstyle-}{\eta }(x,t;r,0)$ | $\bar{\eta }(x,t;r,1)$ |
---|---|---|---|---|---|---|---|
0.5 | 0.02 | 0.63629 | 1.89413 | 0.31905 | 0.54362 | 0.051686 | 0.14913. |
0.04 | 0.62114 | 1.81202 | 0.32272 | 0.55685 | 0.050655 | 0.13669 | |
0.06 | 0.60284 | 1.69861 | 0.32599 | 0.56465 | 0.049403 | 0.12015 | |
0.08 | 0.58141 | 1.55391 | 0.32885 | 0.56703 | 0.047932 | 0.09952 | |
0.11 | 0.55684 | 1.37791 | 0.33131 | 0.56399 | 0.046240 | 0.07479 | |
1.0 | 0.02 | 0.58722 | 1.78309 | 0.10954 | 0.19509 | 0.036305 | 0.11496 |
0.04 | 0.60397 | 1.85665 | 0.11331 | 0.21593 | 0.037325 | 0.12466 | |
0.06 | 0.62104 | 1.93310 | 0.11730 | 0.23914 | 0.038385 | 0.13507 | |
0.08 | 0.63843 | 2.01243 | 0.12149 | 0.26473 | 0.039486 | 0.14619 | |
0.1 | 0.65614 | 2.0946 | 0.12590 | 0.29269 | 0.040628 | 0.15802 |
Table 6. Lower and Upper solution of $\tilde{\upsilon }(x,t;r,\beta )$, $\tilde{v}(x,t;r,\beta )$ and $\tilde{\eta }(x,t;r,\beta )$ at x=0.5, t=0.05, $\hbar =1$, n=1 and α=1 with different values of r. |
r | $\underset{\scriptscriptstyle-}{\upsilon }(x,t;r,0)$ | $\bar{\upsilon }(x,t;r,1)$ | $\underset{\scriptscriptstyle-}{v}(x,t;r,0)$ | $\bar{v}(x,t;r,1)$ | $\underset{\scriptscriptstyle-}{\eta }(x,t;r,0)$ | $\bar{\eta }(x,t;r,1)$. |
---|---|---|---|---|---|---|
0 | 1.41246×10−6 | 2.28732 | 0.21000 | 0.67979 | 3.38205×10−7 | 0.15335 |
0.1 | 0.12431 | 2.18436 | 0.23250 | 0.65629 | 0.01041 | 0.14943 |
0.2 | 0.24774 | 2.08004 | 0.25521 | 0.63268 | 0.02064 | 0.14501 |
0.3 | 0.37024 | 1.97440 | 0.27811 | 0.60899 | 0.03067 | 0.14011 |
0.4 | 0.49180 | 1.86745 | 0.30118 | 0.58524 | 0.04048 | 0.13474 |
0.5 | 0.61238 | 1.75923 | 0.32441 | 0.56143 | 0.05005 | 0.12893 |
0.6 | 0.73197 | 1.64975 | 0.34777 | 0.53759 | 0.05937 | 0.12268 |
0.7 | 0.85054 | 1.53905 | 0.37125 | 0.51374 | 0.06842 | 0.11603 |
0.8 | 0.96806 | 1.42715 | 0.39484 | 0.48989 | 0.07718 | 0.10898 |
0.9 | 1.08451 | 1.31408 | 0.41852 | 0.46606 | 0.08563 | 0.10155 |
1.0 | 1.19985 | 1.19985 | 0.44226 | 0.44226 | 0.09376 | 0.09376 |
Fig. 12. Plot of $\tilde{\upsilon }(x,t;r,\beta )$, $\tilde{v}(x,t;r,\beta )$ and $\tilde{\eta }(x,t;r,\beta )$ at x=0.5, t=0.05, $\hbar$=−1, n=1, α=1 with respect to r. |
Fig. 13. Plot of $\tilde{\upsilon }(x,t;r,\beta )$, $\tilde{v}(x,t;r,\beta )$ and $\tilde{\eta }(x,t;r,\beta )$ at x=0.5, t=0.05, $\hbar$=−1, n=1, α=0.87 with respect to r. |
Fig. 14. Plot of $\tilde{\upsilon }(x,t;r,\beta )$, $\tilde{v}(x,t;r,\beta )$ and $\tilde{\eta }(x,t;r,\beta )$ at x=0.5, t=0.05, $\hbar$=−1, n=1, α=0.75 with respect to r. |
Fig. 15. Surfaces of $\tilde{\upsilon }(x,t;r,\beta )$, $\tilde{v}(x,t;r,\beta )$ and $\tilde{\eta }(x,t;r,\beta )$ at x=0.5, $\hbar$=−1, n=1, α=1. |