Research article

New single traveling wave solution in birefringent fibers or crossing sea waves on the high seas for the coupled Fokas-Lenells system

  • Zhao Li , a, * ,
  • Jing Liu b ,
  • Xinyu Xie a
Expand
  • aCollege of Computer Science, Chengdu University, Chengdu 610106, PR China
  • bOfficers College of PAP, Chengdu 610213, China
* E-mail address:. (Z. Li)

Received date: 2022-03-19

  Revised date: 2022-05-15

  Accepted date: 2022-05-15

  Online published: 2022-05-20

Abstract

The main work of this paper is focused on construction the single traveling wave solution of the coupled Fokas-Lenells system, which is usually used to simulate the propagation of ultrashort optical pulses in birefringent fibers or crossing sea waves on the high seas. Firstly, the coupled Fokas-Lenells system is simplified into a nonlinear ordinary differential equation by traveling wave transformation and linear transformation. Then, using the well-known complete discriminant system of third-order polynomials, some single traveling wave solutions of the coupled Fokas-Lenells system are obtained including implicit solutions, rational function solutions and Jacobian function solutions.

Cite this article

Zhao Li , Jing Liu , Xinyu Xie . New single traveling wave solution in birefringent fibers or crossing sea waves on the high seas for the coupled Fokas-Lenells system[J]. Journal of Ocean Engineering and Science, 2023 , 8(6) : 590 -594 . DOI: 10.1016/j.joes.2022.05.017

1. Introduction

Coupled system is usually composed of two or more ordinary differential equations, partial differential equations or fractional partial differential equations. The coupled system usually comes from the fields of fluid dynamics, ocean physics, marine engineering, control theory, control engineering and communication system. This kind of system is a very important mathematical and physical equations. This year’s research shows that many experts and scholars are devoted themselves to the research of coupled system. For example, the well-known coupled Schröding equations [1], [2], coupled Boussinesq equations [3], coupled KdV equations [4], coupled nonlinear Maccari system [5] and coupled Fokas-Lenells system [6]. Among them, the most striking is to construct the traveling wave solution [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17] of the coupled system.
In the current work, we first review the coupled Fokas-Lenells(FL) system [18], [19]
$\left\{\begin{array}{l} i D_{\tau} \frac{\partial u}{\partial x}+\frac{\sigma}{2} \frac{\partial^{2} u}{\partial \tau^{2}}+\gamma_{1}\left(2|u|^{2}+|v|^{2}\right) D_{\tau} u+\gamma_{1} u v^{*} D_{\tau} v=0 \\ i D_{\tau} \frac{\partial v}{\partial x}+\frac{\sigma}{2} \frac{\partial^{2} v}{\partial \tau^{2}}+\gamma_{2}\left(2|v|^{2}+|u|^{2}\right) D_{\tau} u+\gamma_{2} v u^{*} D_{\tau} u=0 \end{array}\right.$
where $u=u(τ,x) $ and $v=v(τ,x) $ stand for the complex envelopes of the double field components. $τ$ and $x$ represent the time and continuous distance, respectively. The differential operator $D_τ$ is defined by $D_{\tau}=1+i \varepsilon(\partial / \partial \tau)$ (here ε⩾0). σ represents the group velocity dissipation parameter. $γ_1$ and $γ_2$ represent nonlinear coefficients.
The FL system is an integrable generalization of the nonlinear Schrödinger equation [20], [21], [22], [23], [24], [25], which is one of the topics of recent research. It is worth noting that the FL system is obtained by Fokas [26] from a mathematical point of view by employing two Hamiltonian operators related to the nonlinear Schrödinger equation and by Lenells [27] from the perspective of physics starting from the Maxwell’s equations. The FL system is usually used to simulate the propagation of ultrashort optical pulses in birefringent fibers or crossing sea waves on the high seas. Therefore, it is particularly important to study the optical soliton [28], [29], [30], [31], [32] and traveling wave solution [33], [34], [35], [36] of the FL system. Recently, some interesting results have been reported. For example, in Triki et al. [19], Triki et al.obtained the chirped optical soliton of the FL system in birefringent fiber meduium. In [37], chen et al.regarded the study of peregrine solitons of the FL system as a very important topic. In [38], by using the extended trial function method, the optical soliton solutions of the FL system in birefringent fibers were obtained.
In present section, we mainly introduce the research background and research progress of the coupled Fokas-Lenells system. In the following work, we construct the single traveling wave solutions for the coupled Fokas-Lenells system by using the polynomial complete discriminant system method. In Section 3, we give a summary.

2. Single traveling wave solutions for (1.1)

In order to construct the optical solitons and single traveling wave solutions of (1.1), we firstly take into account the following traveling wave transformation
$\begin{aligned} u(\tau, x) & =P(\zeta) e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}, v(\tau, x)=Q(\zeta) e^{i\left(\psi_{2}(\zeta)-k_{2} x\right)} \\ \zeta & =\tau-\alpha x \end{aligned}$
where the parameters $P(ζ) $ and $Q(ζ) $ represent the amplitudes. $ψ_1$ and $ψ_2$ are real functions with respect to variable ζ.
Plugging (2.1) into (1.1) and separating the real and imaginary part, we obtain
$\begin{aligned} \frac{\sigma+2 \alpha \varepsilon}{2} \frac{d^{2} P}{d \zeta^{2}} & -\frac{\sigma+2 \alpha \varepsilon}{2} P\left(\frac{d \psi_{1}}{d \zeta}\right)^{2}+\left(\alpha-\varepsilon k_{1}\right) P \frac{d \psi_{1}}{d \zeta} \\ & +2 \gamma_{1} P\left(P^{2}+Q^{2}\right)+k_{1} P-\varepsilon \gamma_{1}\left(2 P^{2}+Q^{2}\right) P \frac{d \psi_{1}}{d \zeta} \\ & -\varepsilon \gamma_{1} P Q^{2} \frac{d \psi_{2}}{d \zeta}=0 \end{aligned}$
$\begin{array}{l} \frac{\sigma+2 \alpha \varepsilon}{2}\left(P \frac{d^{2} \psi_{1}}{d \zeta^{2}}+2 \frac{d P}{d \zeta} \frac{d \psi_{1}}{d \zeta}\right)-\left(\alpha-\varepsilon k_{1}\right) \frac{d P}{d \zeta} \\ \quad+2 \varepsilon \gamma_{1} P^{2} \frac{d P}{d \zeta}+\varepsilon \gamma_{1}\left(Q^{2} \frac{d P}{d \zeta}+P Q \frac{d Q}{d \zeta}\right)=0 \end{array}$
$\begin{aligned} \frac{\sigma+2 \alpha \varepsilon}{2} \frac{d^{2} Q}{d \zeta^{2}} & -\frac{\sigma+2 \alpha \varepsilon}{2} P\left(\frac{d \psi_{2}}{d \zeta}\right)^{2}+\left(\alpha-\varepsilon k_{2}\right) Q \frac{d \psi_{2}}{d \zeta} \\ & +2 \gamma_{2} Q\left(P^{2}+Q^{2}\right)+k_{2} Q-\varepsilon \gamma_{2}\left(2 Q^{2}+P^{2}\right) Q \frac{d \psi_{2}}{d \zeta} \\ & -\varepsilon \gamma_{2} Q P^{2} \frac{d \psi_{1}}{d \zeta}=0 \end{aligned}$
$\begin{array}{l} \frac{\sigma+2 \alpha \varepsilon}{2}\left(Q \frac{d^{2} \psi_{1}}{d \zeta^{2}}+2 \frac{d Q}{d \zeta} \frac{d \psi_{2}}{d \zeta}\right)-\left(\alpha-\varepsilon k_{2}\right) \frac{d Q}{d \zeta} \\ \quad+2 \varepsilon \gamma_{2} Q^{2} \frac{d Q}{d \zeta}+\varepsilon \gamma_{2}\left(P^{2} \frac{d Q}{d \zeta}+Q P \frac{d P}{d \zeta}\right)=0 \end{array}$
Multiplying both sides of Eq. (2.3) by $P$ and integrating it once, we have
$\frac{d \psi_{1}}{d \zeta}=\frac{\alpha-\varepsilon k_{1}}{\sigma+2 \alpha \varepsilon}-\frac{\varepsilon \gamma_{1}}{\sigma+2 \alpha \varepsilon}\left(P^{2}+Q^{2}\right)$
Similar to (2.6), multiplying both sides of Eq. (2.5) by $Q$ and integrating it once, we obtain
$\frac{d \psi_{2}}{d \zeta}=\frac{\alpha-\varepsilon k_{2}}{\sigma+2 \alpha \varepsilon}-\frac{\varepsilon \gamma_{2}}{\sigma+2 \alpha \varepsilon}\left(P^{2}+Q^{2}\right)$
Integrating both sides of Eqs. (2.6) and (2.7) simultaneously and making the integration constant zero, hence, we can give the corresponding phase shifts of the two involved waves
$\psi_{1}(\zeta)=\delta_{1} \zeta-\eta_{1} \int\left(P^{2}+Q^{2}\right) d \zeta$
$\psi_{2}(\zeta)=\delta_{2} \zeta-\eta_{2} \int\left(P^{2}+Q^{2}\right) d \zeta$
where $\delta_{1}=\frac{\alpha-\varepsilon k_{1}}{\sigma+2 \alpha \varepsilon}, \delta_{2}=\frac{\alpha-\varepsilon k_{2}}{\sigma+2 \alpha \varepsilon}, \eta_{1}=\frac{\varepsilon \gamma_{1}}{\sigma+2 \alpha \varepsilon}$ and $\eta_{2}=\frac{\varepsilon \gamma_{2}}{\sigma+2 \alpha \varepsilon}$.
Substituting (2.8) and (2.9) into (2.2) and (2.4) respectively, we can get
$\left\{\begin{array}{l} \frac{d^{2} P}{d \zeta^{2}}+a_{1} P^{5}+a_{2} P^{3}+a_{3} P Q^{2}+a_{4} P^{3} Q^{2}+a_{5} P Q^{4}+a_{6} P=0 \\ \frac{d^{2} Q}{d \zeta^{2}}+b_{1} Q^{5}+b_{2} Q^{3}+b_{3} Q P^{2}+b_{4} Q^{3} P^{2}+b_{5} Q P^{4}+b_{6} Q=0 \end{array}\right.$
where the parameters $a_i$ and $b_i (i=1,…,6)$ are given by $a_{1}=3 \eta_{1}^{2}$, $a_{2}=\kappa_{3}-4 \eta_{1} \delta_{1}, a_{3}=\kappa_{3}-2 \eta_{1} \delta_{1}-2 \eta_{1} \delta_{2}, a_{4}=2 \eta_{1} \eta_{2}+4 \eta_{1}^{2}, a_{5}=2 \eta_{1} \eta_{2}+\eta_{1}^{2}$, $a_{6}=\kappa_{1}+\delta_{1}^{2}, b_{1}=3 \eta_{2}^{2}, b_{2}=\kappa_{4}-4 \eta_{4} \delta_{4}, b_{3}=\kappa_{4}-2 \eta_{2} \delta_{2}-2 \eta_{2} \delta_{1}$, $b_{4}=2 \eta_{1} \eta_{2}+4 \eta_{2}^{2}, b_{5}=2 \eta_{1} \eta_{2}+\eta_{2}^{2}$ and $b_{6}=\kappa_{2}+\delta_{2}^{2}$ with $\kappa_{1}=\frac{2 \bar{k}_{1}}{\sigma+2 \alpha \varepsilon}$, $\boldsymbol{\kappa}_{2}=\frac{2 k_{2}}{\sigma+2 \alpha \varepsilon}, \kappa_{3}=\frac{4 \gamma_{1}}{\sigma+2 \alpha \varepsilon}$ and $\kappa_{4}=\frac{4 \gamma_{2}}{\sigma+2 \alpha \varepsilon}$.
In order to eliminate the coupled relationship, we assume that $Q=\rho P$. Then, Eq. (2.10) can be simplified to
$\frac{d^{2} P}{d \zeta^{2}}-c_{1} P^{5}-c_{2} P^{3}-c_{3} P=0$
where $c_{1}:=-\left[a_{1}+\lambda^{2} a_{4}+a_{5} \lambda^{4}\right]=-\left[\lambda^{4} b_{1}+\lambda^{2} b_{4}+b_{5}\right]$, $c_{2}:=-\left[a_{2}+\lambda^{2} a_{3}\right]=-\left[\lambda^{2} b_{2}+b_{3}\right]$ and $c_{3}:=-a_{6}=-b_{6}$6.
Multiplying Eq. (2.11) by P′ and then integrating it, we have
$\left(\frac{d P}{d \zeta}\right)^{2}=\frac{c_{1}}{3} P^{6}+\frac{c_{2}}{2} P^{4}+c_{3} P^{2}+d$
where $d$ is the integral constant.
Next, let’s make a transformation $\Phi(\zeta)=P^{2}(\zeta)$. Then, Eq. 2(2.12) becomes
$\pm 2 \sqrt{\frac{\epsilon C_{1}}{3}}\left(\zeta-\zeta_{0}\right)=\int \frac{d \Phi}{\sqrt{\epsilon \Phi\left(\Phi^{3}+p \Phi^{2}+q \Phi+d\right)}}$
where $\epsilon= \pm 1, p=\frac{3 c_{2}}{2 c_{1}}$ and $q=\frac{3 c_{3}}{c_{1}}$.
To simplify the calculation, we assume that the third-order polynomial is
$f(\Phi)=\Phi^{3}+p \Phi^{2}+q \Phi+d$
and its complete discriminant system is as follows
$\left\{\begin{array}{l} \Delta=-27\left(\frac{2 p^{3}}{27}+d-\frac{p q}{3}\right)^{2}-4\left(q-\frac{p^{2}}{3}\right)^{3} \\ D_{1}=q-\frac{p^{2}}{3} \end{array}\right.$
If $c_1>0$, we assume $ϵ=1$. Conversely, if $c_1<0$, we assume $ϵ=−1$. Therefore, according to the complete discriminant method of third-order polynomials, we can get the solution of Eq. (1.1) in the following four forms.
Case I. If Δ=0, $D_1<0$, then Eq. (2.14) can be written as $f(\Phi)=(\Phi-s)^{2}(\Phi-l)$, where both s and l are real numbers, $s≠l$, and $l>0$.
(i) ϵ=1
When $s>l$ and $Φ>l$, or when $s<0$ and $Φ<0$, it can be obtained from Eq.(2.13)
$\pm 2 \sqrt{\frac{c_{1}}{3}}\left(\zeta-\zeta_{0}\right)=\frac{1}{s(s-l)} \ln \frac{\left(\sqrt{s(\Phi-l)}-\sqrt{\Phi(s-l))^{2}}\right.}{|\Phi-s|}$
When $s>l$ and $Φ<0$, or when $s<Φ$ and $Φ<l$, it can be obtained from Eq.(2.13)
$\pm 2 \sqrt{\frac{c_{1}}{3}}\left(\zeta-\zeta_{0}\right)=\frac{1}{s(s-l)} \ln \frac{\left(\sqrt{-s(\Phi-l)}-\sqrt{\Phi(l-s))^{2}}\right.}{|\Phi-s|}$
When $l>s>0$, it can be obtained from Eq.(2.13)
$\pm 2 \sqrt{\frac{c_{1}}{3}}\left(\zeta-\zeta_{0}\right)=\frac{1}{s(l-s)} \arcsin \frac{s(\Phi-l)+\Phi(s-l)}{l|\Phi-s|} $
(ii) ϵ=−1
When $s>l$ and $Φ>l$, or when $s<0$ and $Φ<0$, it can be obtained from Eq.(2.13)
$\pm 2 \sqrt{-\frac{c_{1}}{3}}\left(\zeta-\zeta_{0}\right)=\frac{1}{s(l-s)} \ln \frac{\left(\sqrt{s(-\Phi+l)}-\sqrt{\Phi(l-s))^{2}}\right.}{|\Phi-s|}$
When $s>l$ and $Φ<0$, or when $s<0$ and $Φ<l$, it can be obtained from Eq.(2.13)
$\pm 2 \sqrt{-\frac{c_{1}}{3}}\left(\zeta-\zeta_{0}\right)=\frac{1}{s(l-s)} \ln \frac{(\sqrt{-s(-\Phi+l)}-\sqrt{\Phi(s-l)})^{2}}{|\Phi-s|} $
When$l>s>0$, it can be obtained from Eq.(2.13)
$\pm 2 \sqrt{-\frac{c_{1}}{3}}\left(\zeta-\zeta_{0}\right)=\frac{1}{s(s-l)} \arcsin \frac{(-\Phi+l)(s-l)+\Phi(i-s)}{|l(\Phi-s)|}.$
Case II. If Δ=0,$D_1=0$, then Eq. (2.14) can be written as $f(\Phi)=(\Phi-\mu)^{3}$, where $μ$ is real number.
(i) ϵ=1
When $Φ>μ$ and $Φ>0$, or when $Φ<μ$ and $Φ<0$, it can be obtained from Eq.(1.1)
$ \begin{array}{l} u_{1}(\tau, x) \\ = \pm \sqrt{\frac{3 \mu}{c_{1} \mu^{2}\left(\tau-\alpha x-\zeta_{0}\right)^{2}-3}+\mu} \cdot e^{i\left[\delta_{1}(\tau-\alpha x)-\delta_{1} \eta_{1}(1+\rho) \int\left(\frac{3 \mu}{c_{1} \mu^{2}\left(\zeta-\zeta_{0}\right)^{2}-3}+\mu\right) d \zeta-k_{1}, t\right]} \end{array}$
(ii) ϵ=−1
When $Φ>μ$ and $Φ<0$, or when $Φ<μ$ and $Φ>0$, it can be obtained from Eq.(1.1)
$\begin{array}{l} u_{2}(\tau, x) \\ = \pm \sqrt{\frac{3 \mu}{-c_{1} \mu^{2}\left(\tau-\alpha x-\zeta_{0}\right)^{2}-3}+\mu} \cdot e^{i\left[\delta_{1}(\tau-\alpha x)-\delta_{1} \eta_{1}(1+\rho) \int\left(\frac{3 \mu}{-c_{1} \mu^{2}\left(\zeta-\zeta_{0}\right)^{2}-3}+\mu\right) d \zeta-k_{1} x\right]} \end{array}$
Case III. If Δ>0, $D_1<0$, then Eq. (2.14) can be written as $f(\Phi)=\left(\Phi-\theta_{1}\right)\left(\Phi-\theta_{2}\right)\left(\Phi-\theta_{3}\right)$, where $θ_1$, $θ_2$ and $θ_3$ are real numbers, and $0<θ_1<θ_2<θ_3$.
(i) ϵ=1
When Φ>0 and Φ<θ3, it can be obtained from Eq. (1.1)
$u_{3}(\tau, x)= \pm \sqrt{\frac{-\theta_{1} \theta_{3} \mathbf{s n}^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{\sigma_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right), m\right)}{-\theta_{3} \operatorname{sn}^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{\sigma_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right), m\right)-\left(\theta_{1}-\theta_{3}\right)}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
$u_{4}(\tau, x)= \pm \sqrt{\frac{\theta_{3}\left(\theta_{1}-\theta_{2}\right) \operatorname{sn}^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{c_{1}}{s}}\left(\tau-\alpha x-\zeta_{0}\right), m\right)-\theta_{2}\left(\theta_{1}-\theta_{3}\right)}{\left(\theta_{1}-\theta_{2}\right) \operatorname{sn}^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{c_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right), m\right)-\left(\theta_{1}-\theta_{3}\right)}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
where $m^{2}=\frac{\theta_{3}\left(\theta_{1}-\theta_{2}\right)}{\theta_{2}\left(\theta_{1}-\theta_{3}\right)}$.
(ii) ϵ=−1
When $θ_3<Φ<θ_2$, it can be obtained from Eq.(1.1)
$u_{5}(\tau, x)= \pm \sqrt{\frac{-\theta_{1} \theta_{2} \operatorname{sn}^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{\sigma_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right), m\right)+\theta_{1} \theta_{2}}{-\theta_{1} \operatorname{sn}^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{\sigma_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right), m\right)+\theta_{3}}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
$u_{6}(\tau, x)= \pm \sqrt{\frac{-\theta_{2} \theta_{3}}{\left(\theta_{2}-\theta_{3}\right) \mathbf{s n}^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{c_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right), m\right)-\theta_{2}}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
where $m^{2}=\frac{\theta_{1}\left(\theta_{2}-\theta_{3}\right)}{\theta_{2}\left(\theta_{1}-\theta_{3}\right)}$.
Case IV. If Δ<0, then Eq. (2.14) can be written as $f(\Phi)=\left(\Phi-\vartheta_{1}\right)\left[\left(\Phi-\vartheta_{2}\right)^{2}+\vartheta_{3}^{2}\right]$, where $\vartheta_{1}, \vartheta_{2}$ and $\vartheta_{3}$ are real numbers, and $\vartheta_{1}>0, \theta_{2}, \theta_{3}>0$. So, it can be obtained from Eq. (1.1)(Here, the positive sign corresponds to ε=1 and the symbol corresponds to ε=−1)
$u_{7}(\tau, x)= \pm \sqrt{\left.\left.\left.\frac{d_{1} \mathrm{cn}^{2}\left(\frac{\sqrt{7 \sigma \delta_{3} m_{1} g_{1} c_{1}}}{3 m m_{1}}\right.}{d_{3} \mathrm{cn}^{2}\left(\frac{\sqrt{\mp \sigma b_{3} m_{1} \phi_{1} c_{1}}}{3{ }^{3 m m_{1}}}\right.}\left(\tau-\alpha x-\zeta_{0}\right), m\right)+\zeta_{2}\right), m\right)+d_{4}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
where $d_{1}=\frac{1}{2} \vartheta_{1}\left(d_{3}-d_{4}\right), d_{2}=\frac{1}{2} \vartheta_{1}\left(\vartheta_{4}-d_{3}\right), d_{3}=\vartheta_{1}-\vartheta_{2}-\frac{\vartheta_{3}}{m_{1}}$, $d_{4}=\vartheta_{1}-\vartheta_{2}-\vartheta_{3} m_{1}, E=\frac{\vartheta_{3}^{2}-\vartheta_{2}\left(\vartheta_{1}-\vartheta_{2}\right)}{\vartheta_{1} \vartheta_{3}}, m_{1}=E \pm \sqrt{E^{2}+1}$ and $m^{2}=\frac{1}{1+m_{1}^{2}}$.
Remark 2.1
In Eqs. (2.24), (2.25), (2.26) and (2.27), when $m=0$, we can get
$u_{3_{1}}(\tau, x)= \pm \sqrt{\frac{\left.-\theta_{1} \theta_{3} \sin ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right.}\right) \sqrt{\frac{c_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right)\right)}{\left.-\theta_{3} \sin ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right.}\right) \sqrt{\frac{\varepsilon_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right)\right)-\left(\theta_{1}-\theta_{3}\right)}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
$u_{4_{1}}(\tau, x)= \pm \sqrt{\frac{\theta_{3}\left(\theta_{1}-\theta_{2}\right) \sin ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{c_{1}}{3}}\right.}{\left.\left.\left(\theta_{1}-\theta_{2}\right) \sin ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{c_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right)\right)-\zeta_{0}\right)\right)-\left(\theta_{1}-\theta_{3}-\theta_{3}\right)}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
$u_{5_{1}}(\tau, x)= \pm \sqrt{\frac{-\theta_{1} \theta_{2} \sin ^{2}\left(\sqrt{-\theta_{3}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{\theta_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right), m_{0}\right)+\theta_{1} \theta_{2}}{-\theta_{1} \sin ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{\sigma_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right)\right)+\theta_{3}}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
$u_{6_{1}}(\tau, x)= \pm \sqrt{\frac{-\theta_{2} \theta_{3}}{\left(\theta_{2}-\theta_{3}\right) \sin ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{c_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right)\right)-\theta_{2}}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
When $m=1$, we have
$u_{3_{2}}(\tau, x)= \pm \sqrt{\frac{-\theta_{1} \theta_{3} \tanh ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{c_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right)\right)}{-\theta_{3} \tanh ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{c_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right)\right)-\left(\theta_{1}-\theta_{3}\right)}} e^{i\left(\psi_{1}(\zeta)-k_{1}: x\right)}$
$u_{4_{2}}(\tau, x)= \pm \sqrt{\frac{\theta_{3}\left(\theta_{1}-\theta_{2}\right) \tanh ^{2}\left(\sqrt{-\theta_{3}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{\varepsilon_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right)\right)-\theta_{2}\left(\theta_{1}-\theta_{3}\right)}{\left.\left(\theta_{1}-\theta_{2}\right) \tanh ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right.}\right) \sqrt{\frac{q_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right)\right)-\left(\theta_{1}-\theta_{3}\right)}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
$u_{5_{2}}(\tau, x)= \pm \sqrt{\frac{-\theta_{1} \theta_{2} \tanh ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{c_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right), m\right)+\theta_{1} \theta_{2}}{-\theta_{1} \tanh ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{c_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right)\right)+\theta_{3}}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
$u_{6_{2}}(\tau, x)= \pm \sqrt{\frac{-\theta_{2} \theta_{3}}{\left(\theta_{2}-\theta_{3}\right) \tanh ^{2}\left(\sqrt{-\theta_{2}\left(\theta_{1}-\theta_{3}\right)} \sqrt{\frac{c_{1}}{3}}\left(\tau-\alpha x-\zeta_{0}\right)\right)-\theta_{3}}} e^{i\left(\psi_{1}(\zeta)-k_{1} x\right)}$
Remark 2.2
When $c_{1}=3, c_{2}=-12, c_{3}=11, \zeta_{0}=0$ and $α=1$, traveling wave solution $\left|u_{3_{1}}(\tau, x)\right|$ and $\left|u_{3_{2}}(\tau, x)\right|$ of Eq. (1.1) are drawn in Figs. 1 and 2, respectively.
Fig. 1. The solution $\left|u_{3_{1}}(\tau, x)\right|$ of Eq. (1.1) for differential parameter.
Fig. 2. The solution $\left|u_{3_{2}}(\tau, x)\right|$ of Eq. (1.1) for differential parameter.
Remark 2.3
In the paper, we only obtain one set of traveling wave solutions of Eq. (1.1). For another set of traveling wave solutions, we can quickly obtain them by the linear transformation $Q=\rho P$ and traveling wave transformation (2.1).

3. Conclusion

In the paper, we obtain new single traveling wave solutions of the coupled Fokas-Lenells system by the complete discriminant system method of polynomials. In comparison to the other references (see Triki et al. [19], Chen et al. [37], Biswas et al. [38]), these solutions in the paper mainly include rational function solutions, implicit function solutions and Jacobian function solutions. The figures of some obtained solutions were depicted for special parameters. The corresponding three-dimensional graphic, two-dimensional graphic and two-dimensional contour graphic of traveling wave solutions are also shown in Figs. 1 and 2, respectively. We hope that the obtained results in the paper can be used to analyze the propagation of traveling wave solutions in nonlinear optical fibers and the water waves in the ocean.

Funding

This work was supported by Scientific Research Funds of Chengdu University under grant no. 2081920034.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors are grateful to the anonymous reviewers for their careful reading and useful suggestions, which greatly improved the presentation of the paper.
[1]
M.E.-S. Rehab, M. Gaballah, J. Ocean Eng. Sci. 5 (2020) 180-185.

[2]
T. Han, Z. Li, X. Zhang, Phys. Lett. A 395 (2021) 127217.

[3]
T. Han, Z. Li, Adv. Math. Phys. 2021 (2021) 3668063.

[4]
Z. Li, P. Li, T. Han, Discrete Dyn. Nat. Soc. 2021 (2021) 5303295.

[5]
Z. Chen, J. Manafian, .M. Rahell, et al., Results Phys. 36 (2022) 105400.

[6]
Z. Du, G. Meng, X. Du, Chaos, Solitons Fractals 153 (2021) 111507.

[7]
M.M.A. Khater A. E.-S. Ahmed, S.H. Alfalqi, et al., Results Phys. 25 (2021) 104322.

[8]
M.E.-S. Rehab, Z. Naturforschung A. 70 (2015) 445-450.

[9]
M.M.A. Khater, S.K. Elagan, M.A. EI-Shorbagy, et al., Commun. Theor. Phys. 73 (2021) 095003.

[10]
M.E.-S. Rehab, Comput. Math. Appl. 73 (2017) 1414-1420.

[11]
M.M.A. Khater, L. Dianchen, Mod. Phys. Lett. B 35 (2021) 2150324.

[12]
M.E.-S. Rehab, Comput. Math. Appl. 75 (2018) 1676-1684.

[13]
M.M.A. Khater, Mod. Phys. Lett. B 35 (2021) 2150220.

[14]
M.E.-S. Rehab, Chin. J. Phys. 71 (2021) 341-350.

[15]
M.M.A. Khater, Mod. Phys. Lett. B 35 (2021) 2150372.

[16]
M.M.A. Khater, Mod. Phys. Lett. B 35 (2021) 2150456.

[17]
M.M.A. Khater, Mod. Phys. Lett. B 35 (2021) 2150441.

[18]
Y. Ye, Y. Zhou, S. Chen, et al., Proc. Math. Phys. Eng. Sci. 475 (2019) 20180806.

[19]
H. Triki,.Q. Zhou, W. Liu, et al., Chaos, Solitons Fractals 155 (2022) 111751.

[20]
H.M.Z. Emad, A. Bekir, S.M.S. Maha, J. Ocean Eng. Sci. 389 (2022) In Press.

[21]
M. Lslam, M. Akbar, J.F. Gómez-Aguilar, et al. J. Ocean Eng. Sci. , (2021). In Press.

[22]
L. Akinyemi, U. Akpan, P. Veeresha, et al. J. Ocean Eng. Sci. , (2022). In Press.

[23]
M. Bilal, M. Younis, Shafqat-Ur-Rehman, et al. J. Ocean Eng. Sci. (2022). In Press.

[24]
A. Zafar, M. Raheel, M. Asif, K. Hosseini, et al. J. Ocean Eng. Sci. (2021). In Press.

[25]
F. Wang, A.S. Samir, M.A.K. Mostafa, J. Ocean Eng. Sci. (2022). In Press.

[26]
S.F. Athanassios, Phys D 87(1995) 145-150.

[27]
J. Lenells, Stud. Appl. Math. 123 (2009) 215-232.

[28]
Z. Li, Z. Lian, Optik 258 (2022) 168835.

[29]
M. Bilal, J. Ahmad, Results Phys. 33 (2022) 105198.

[30]
A.-M. Wazwaz, Optik 251 (2022) 168334.

[31]
A. Sonmezoglu, M. Ekici, A. Biswas, Phys. Lett. A 410 (2021) 127541.

[32]
A. Biswas, M. Ekici, A. Sonmezoglu, Phys. Lett. A 426 (2022) 127885.

[33]
L. Tang, S. Chen, Appl. Math. Comput. 413 (2022) 126599.

[34]
T. Han, Z. Li, X. Zhang, Phys. Lett. A 395 (2021) 127217.

[35]
Y. Shang, Appl. Math. Lett. 131 (2022) 108029.

[36]
N. Rahman, R. Marangell, D. Oelz, Appl. Math. Comput. 421 (2022) 126954.

[37]
S. Chen, Y. Ye, J.M. Soto-Crespo, et al. Phys. Rev., Lett. 121 (2018) 104101.

[38]
A. Biswas, M. Ekici, A. Sonmezoglu, et al., Optik 165 (2018) 74-86.

Outlines

/