1. Introduction
2. Background for tempered fractional derivatives
3. The tempered fractional natural transform method
4. Convergence and uniqueness of the TFNTM
5. Applications of TFNT method
Fig. 1. Solutions for example 5.1 with λ=0.25 and λ=0.6, respectively.. |
Fig. 2. Solutions for example 5.1 with t=2,3 and different values of λ, respectively. |
Fig. 3. Solutions for example 5.2 with λ=1.5 and μ=0.75 and μ=1, respectively. |
Fig. 4. Solutions for example 5.2 with λ=1.5 and t=0.5 and t=0.9, respectively. |
Fig. 5. Solutions for example 5.3 for T=0.5 and T=1, respectively. |
Fig. 6. Solutions for example 5.3 for t=0.25 and t=1, respectively. |
6. Tables of numerical calculations
Table 1. Numerical values for example 5.1 for distinct λ′s. |
x | t | λ=0.25 | λ=0.5 | λ=0.75 | λ=0.9 |
---|---|---|---|---|---|
1/8 | 0.2 | 0.02690483 | 0.02508589 | 0.02434449 | 0.02362501 |
0.4 | 0.10237067 | 0.08899678 | 0.08381401 | 0.07893306 | |
0.6 | 0.21910048 | 0.17759939 | 0.16231363 | 0.14834349 | |
0.8 | 0.37051524 | 0.28002939 | 0.24836379 | 0.22027892 | |
1/6 | 0.2 | 0.03295156 | 0.03072382 | 0.02981579 | 0.02893461 |
0.4 | 0.12537795 | 0.10899835 | 0.10265078 | 0.09667287 | |
0.6 | 0.26834219 | 0.21751395 | 0.19879278 | 0.18168293 | |
0.8 | 0.45378665 | 0.34296457 | 0.30418228 | 0.26978548 | |
1/3 | 0.2 | 0.03295155 | 0.03072382 | 0.02981579 | 0.02893461 |
0.4 | 0.12537795 | 0.10899835 | 0.10265078 | 0.09667286 | |
0.6 | 0.26834219 | 0.21751395 | 0.19879278 | 0.18168292 | |
0.8 | 0.45378664 | 0.34296456 | 0.30418228 | 0.26978548 |
Table 2. Numerical values for example 5.2 for distinct λ′s. |
x | t | λ=0.2 | λ=0.4 | λ=0.6 | λ=0.8 |
---|---|---|---|---|---|
0.5 | 0.2 | 0.00639816 | 0.00578930 | 0.00523838 | 0.00473988 |
0.4 | 0.02559267 | 0.02315720 | 0.02095350 | 0.01895951 | |
0.6 | 0.05758350 | 0.05210371 | 0.04714538 | 0.04265891 | |
0.8 | 0.10237066 | 0.09262881 | 0.08381401 | 0.07583806 | |
1 | 0.2 | 0.03274923 | 0.02681280 | 0.02195246 | 0.01797316 |
0.4 | 0.13099692 | 0.10725120 | 0.08780986 | 0.07189263 | |
0.6 | 0.29474307 | 0.24131521 | 0.19757219 | 0.16175843 | |
0.8 | 0.52398768 | 0.42900483 | 0.35123944 | 0.28757054 | |
2 | 0.2 | 0.15167611 | 0.10167154 | 0.06815247 | 0.04568397 |
0.4 | 0.60670445 | 0.40668615 | 0.27260988 | 0.18273587 | |
0.6 | 1.36508501 | 0.91504385 | 0.61337223 | 0.41115570 | |
0.8 | 2.42681779 | 1.62674461 | 1.09043952 | 0.73094347 |
Table 3. Numerical values for example 5.3 for distinct T′s. |
x | t | T=0 | T=0.25 | T=0.5 | T=0.75 |
---|---|---|---|---|---|
0.25 | 0.2 | 0.0298888 | 0.0383780 | 0.0492783 | 0.0632746 |
0.4 | 0.0244709 | 0.0314213 | 0.0403457 | 0.0518049 | |
0.6 | 0.0200351 | 0.0257255 | 0.0330323 | 0.0424143 | |
0.8 | 0.0164033 | 0.0210623 | 0.0270445 | 0.0347259 | |
0.5 | 0.2 | 0.0620732 | 0.0797035 | 0.1023410 | 0.1314090 |
0.4 | 0.0508212 | 0.0652557 | 0.0837900 | 0.1075880 | |
0.6 | 0.0416089 | 0.0534269 | 0.0686015 | 0.0880860 | |
0.8 | 0.0340665 | 0.0437422 | 0.0561661 | 0.0721187 | |
0.75 | 0.2 | 0.0543855 | 0.0698323 | 0.0896665 | 0.1151340 |
0.4 | 0.0445270 | 0.0571739 | 0.0734127 | 0.0942638 | |
0.6 | 0.0364557 | 0.0468100 | 0.0601052 | 0.0771766 | |
0.8 | 0.0298474 | 0.0383248 | 0.0492100 | 0.0631869 |