研究微重力对甲状腺肿瘤的影响
Research on microgravity which affects thyroid tumor
陈雪梅, 陈远洋, 周全红 . 研究微重力对甲状腺肿瘤的影响[J]. 外科理论与实践, 2021 , 26(02) : 179 -182 . DOI: 10.16139/j.1007-9610.2021.02.018
| [1] | Jhala DV, Kale RK, Singh RP. Microgravity alters cancer growth and progression[J]. Curr Cancer Drug Targets, 2014, 14(4):394-406. |
| [2] | 苟鸿蒙, 胡瑜, 杨春. 微重力对人类细胞影响的研究进展[J]. 医学综述, 2018, 24(7):1279-1283,1288. |
| [3] | Bradbury P, Wu H, Choi JU, et al. Modeling the impact of microgravity at the cellular level: implications for human disease[J]. Front Cell Dev Biol, 2020, 8:96. |
| [4] | Albi E, Krüger M, Hemmersbach R, et al. Impact of gravity on thyroid cells[J]. Int J Mol Sci, 2017, 18(5):972. |
| [5] | Plakhuta-Plakutina GI. Effect of weightlessness and artificial gravitation on thyroid gland morphology[J]. Arkh Anat Gistol Embriol, 1979, 76(3):17-21. |
| [6] | Aleshcheva G, Bauer J, Hemmersbach R, et al. Scaffold-free tissue formation under real and simulated microgra-vity conditions[J]. Basic Clin Pharmacol Toxicol, 2016, 119(Suppl 3):26-33. |
| [7] | Warnke E, Pietsch J, Wehland M, et al. Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1[J]. Cell Commun Signal, 2014, 12:32. |
| [8] | Masini MA, Albi E, Barmo C, et al. The impact of long-term exposure to space environment on adult mammalian organisms: a study on mouse thyroid and testis[J]. PLoS One, 2012, 7(4):e35418. |
| [9] | 张倍宁. RCCS模拟微重力影响大鼠甲状腺滤泡上皮细胞生长特性和分泌功能的研究[D]. 安徽医科大学, 2018,1-65. |
| [10] | Albi E, Ambesi-Impiombato FS, Peverini M, et al. Thyrotropin receptor and membrane interactions in FRTL-5 thyroid cell strain in microgravity[J]. Astrobiology, 2011, 11(1):57-64. |
| [11] | Melnik D, Sahana J, Corydon TJ, et al. Dexamethasone inhibits spheroid formation of thyroid cancer cells exposed to simulated microgravity[J]. Cells, 2020, 9(2):367. |
| [12] | Martin A, Zhou A, Gordon RE, et al. Thyroid organoid formation in simulated microgravity: influence of ke-ratinocyte growth factor[J]. Thyroid, 2000, 10(6):481-487. |
| [13] | Warnke E, Pietsch J, Kopp S, et al. Cytokine release and focal adhesion proteins in normal thyroid cells cultured on the random positioning machine[J]. Cell Physiol Biochem, 2017, 43(1):257-270. |
| [14] | Vistejnova L, Safrankova B, Nesporova K, et al. Low molecular weight hyaluronan mediated CD44 dependent induction of IL-6 and chemokines in human dermal fibroblasts potentiates innate immune response[J]. Cytokine, 2014, 70(2):97-103. |
| [15] | Infanger M, Kossmehl P, Shakibaei M, et al. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells[J]. Cell Tissue Res, 2006, 324(2):267-277. |
| [16] | Lin X, Zhang K, Wei D, et al. The impact of spaceflight and simulated microgravity on cell adhesion[J]. Int J Mol Sci, 2020, 21(9):3031. |
| [17] | Krüger M, Melnik D, Kopp S, et al. Fighting thyroid cancer with microgravity research[J]. Int J Mol Sci, 2019, 20(10):2553. |
| [18] | Grimm D, Bauer J, Kossmehl P, et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells[J]. FASEB J, 2002, 16(6):604-606. |
| [19] | Kopp S, Sahana J, Islam T, et al. The role of NFκB in spheroid formation of human breast cancer cells cultured on the Random Positioning Machine[J]. Sci Rep, 2018, 8(1):921. |
| [20] | Bauer J, Wehland M, Pietsch J, et al. Annotated gene and proteome data support recognition of interconnections between the results of different experiments in space research[J]. Microgravity Sci Tec, 2016, 28(3):357-365. |
| [21] | Riwaldt S, Bauer J, Wehland M, et al. Pathways Regula-ting spheroid formation of human follicular thyroid cancer cells under simulated microgravity conditions: a genetic approach[J]. Int J Mol Sci, 2016, 17(4):528. |
| [22] | Kopp S, Warnke E, Wehland M, et al. Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity[J]. Sci Rep, 2015, 5:16691. |
| [23] | Ulbrich C, Pietsch J, Grosse J, et al. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton[J]. Cell Physiol Biochem, 2011, 28(2):185-198. |
| [24] | Zhao T, Li R, Tan X, et al. Simulated microgravity reduces focal adhesions and alters cytoskeleton and nuclear positioning leading to enhanced apoptosis via suppressing FAK/RhoA-mediated mTORC1/NF-κB and ERK1/2 pathways[J]. Int J Mol Sci, 2018, 19(7):1994. |
| [25] | Deng B, Liu R, Tian X, et al. Simulated microgravity inhibits the viability and migration of glioma via FAK/RhoA/Rock and FAK/Nek2 signaling[J]. In Vitro Cell Dev Biol Anim, 2019, 55(4):260-271. |
| [26] | Zhao T, Tang X, Umeshappa CS, et al. Simulated microgravity promotes cell apoptosis through suppressing Uev1A/TICAM/TRAF/NF-κB-regulated anti-apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-da-mage response pathways[J]. J Cell Biochem, 2016, 117(9):2138-2148. |
| [27] | Lin SC, Gou GH, Hsia CW, et al. Simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rat neural crest stem cells via upregulating CXCR4 expression and RhoA-ROCK1-p38 MAPK-p53 signaling[J]. Stem Cells Dev, 2016, 25(15):1172-1193. |
| [28] | 韩标, 张扬, 李昊, 等. 模拟微重力环境下核因子κB信号通路调节MC3T3-E1细胞成骨分化的实验研究[J]. 生物医学工程学杂志, 2019, 36(3):421-427. |
| [29] | Riwaldt S, Pietsch J, Sickmann A, et al. Identification of proteins involved in inhibition of spheroid formation under microgravity[J]. Proteomics, 2015, 15(17):2945-2952. |
| [30] | Siveen KS, Prabhu K, Krishnankutty R, et al. Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: potential and challenges[J]. Curr Vasc Phar-macol, 2017, 15(4):339-351. |
| [31] | Pietsch J, Sickmann A, Weber G, et al. A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine[J]. Proteomics, 2011, 11(10):2095-2104. |
| [32] | Bauer J, Kopp S, Schlagberger EM, et al. Proteome analysis of human follicular thyroid cancer cells exposed to the random positioning machine[J]. Int J Mol Sci, 2017, 18(3):546. |
| [33] | Riwaldt S, Bauer J, Pietsch J, et al. The importance of caveolin-1 as key-regulator of three-dimensional growth in thyroid cancer cells cultured under real and simulated microgravity conditions[J]. Int J Mol Sci, 2015, 16(12):28296-28310. |
| [34] | Svejgaard B, Wehland M, Ma X, et al. Common effects on cancer cells exerted by a random positioning machine and a 2D clinostat[J]. PLoS One, 2015, 10(8):e0135157. |
| [35] | Ma X, Pietsch J, Wehland M, et al. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space[J]. FASEB J, 2014, 28(2):813-835. |
| [36] | Pietsch J, Ma X, Wehland M, et al. Spheroid formation of human thyroid cancer cells in an automated culturing system during the shenzhou-8 space mission[J]. Biomaterials, 2013, 34(31):7694-7705. |
| [37] | Grosse J, Wehland M, Pietsch J, et al. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids[J]. FASEB J, 2012, 26(12):5124-5140. |
| [38] | Hammond TG, Benes E, O′Reilly KC, et al. Mechanical culture conditions effect gene expression: gravity-induced changes on the space shuttle[J]. Physiol Genomics, 2000, 3(3):163-173. |
| [39] | Pacifico F, Leonardi A. Role of NF-kappaB in thyroid cancer[J]. Mol Cell Endocrinol, 2010, 321(1):29-35. |
/
| 〈 |
|
〉 |