专家论坛

心脏外科围术期的重症监护

展开
  • 复旦大学附属中山医院心脏重症监护中心,上海 200032

收稿日期: 2023-07-26

  网络出版日期: 2024-01-04

Perioperative intensive care for cardiac surgery patients

Expand
  • Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China

Received date: 2023-07-26

  Online published: 2024-01-04

摘要

心脏外科围术期重症监护的快速发展显著提高了接受心脏大血管手术病人的预后。在血流动力学领域,除传统的各类动脉导管和中心静脉导管,热稀释法与超声心动图正逐步成为常规的血流动力学监测技术,但其临床价值有待进一步研究。同时,优化组织微循环,以满足机体的氧气和代谢需求,成为血流动力学复苏的目标。针对心脏外科围术期V-A 体外膜肺氧合的管理依赖于持续的血流动力学监测。容量管理、血管活性药物及舒张药物、强心药等药物治疗仍是重点。此外,多种机械循环辅助装置为终末期心力衰竭和严重心肺衰竭的病人带来不同的治疗方式和希望。

本文引用格式

刘华, 罗明豪, 屠国伟, 罗哲 . 心脏外科围术期的重症监护[J]. 外科理论与实践, 2023 , 28(05) : 409 -414 . DOI: 10.16139/j.1007-9610.2023.05.03

Abstract

The rapid development of perioperative intensive care in cardiac surgery has greatly improved the prognosis for patients undergoing major cardiovascular surgery. In the field of hemodynamics, besides traditional methods, such as a variety of arterial catheters and central venous catheter, thermodilution and echocardiography have gradually becoming routines in hemodynamic monitoring, but their clinical values require further investigation. At the same time, optimizing micro-circulation, in order to meet the demand of oxygen and metabolism, is the goal of hemodynamic resuscitation. The management of V-A extracorporeal membrane oxygenation (ECMO) in the perioperative period of cardiac surgery depends on persistent hemodynamic monitoring. Volume management, vasoactive drugs, inotropes and vasodilators are still keys in pharmacological management. In addition, many mechanical circulatory assist devices have brought more treatments and hope for end-stage heart failure and severe cardiopulmonary dysfunction.

参考文献

[1] TEBOUL J L, SAUGEL B, CECCONI M, et al. Less invasive hemodynamic monitoring in critically ill patients[J]. Intensive Care Med, 2016, 42(9):1350-1359.
[2] MONNET X, MARIK P E, TEBOUL J L. Prediction of fluid responsiveness: an update[J]. Ann Intensive Care, 2016, 6(1):111.
[3] SAUGEL B, KOUZ K, SCHEEREN T W L, et al. Cardiac output estimation using pulse wave analysis-physiology, algorithms, and technologies: a narrative review[J]. Br J Anaesth, 2021, 126(1):67-76.
[4] DE BACKER D, AISSAOUI N, CECCONI M, et al. How can assessing hemodynamics help to assess volume status?[J]. Intensive Care Med, 2022, 48(10):1482-1494.
[5] SAUGEL B, MALBRAIN M L, PEREL A. Hemodynamic monitoring in the era of evidence-based medicine[J]. Crit Care, 2016, 20(1):401.
[6] CECCONI M, DE BACKER D, ANTONELLI M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task Force of the European Society of Intensive Care Medicine[J]. Intensive Care Med, 2014, 40(12):1795-1815.
[7] JUHL-OLSEN P, SMITH S H, GREJS A M, et al. Automated echocardiography for measuring and tracking cardiac output after cardiac surgery: a validation study[J]. J Clin Monit Comput, 2020, 34(5):913-922.
[8] FLICK M, BERGHOLZ A, SIERZPUTOWSKI P, et al. What is new in hemodynamic monitoring and management?[J]. J Clin Monit Comput, 2022, 36(2):305-313.
[9] BRUNO R R, WOLLBORN J, FENGLER K, et al. Direct assessment of microcirculation in shock: a randomized-controlled multicenter study[J]. Intensive Care Med, 2023, 49(6):645-655.
[10] DURANTEAU J, DE BACKER D, DONADELLO K, et al. The future of intensive care: the study of the microcirculation will help to guide our therapies[J]. Crit Care, 2023, 27(1):190.
[11] MERDJI H, LEVY B, JUNG C, et al. Microcirculatory dysfunction in cardiogenic shock[J]. Ann Intensive Care, 2023, 13(1):38.
[12] LUO J C, ZHANG J D, ZHAO Q Y, et al. Infrared thermography-based body-surface thermal inhomogeneity monitoring to assess the severity of hypoperfusion in critically ill patients[J]. Shock, 2022, 58(5):366-373.
[13] SU Y, LIU K, ZHENG J L, et al. Hemodynamic monitoring in patients with venoarterial extracorporeal membrane oxygenation[J]. Ann Transl Med, 2020, 8(12):792.
[14] TSANGARIS A, ALEXY T, KALRA R, et al. Overview of veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support for the management of cardiogenic shock[J]. Front Cardiovasc Med, 2021, 8:686558.
[15] VIGNON P, REPESSE X, BEGOT E, et al. Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients[J]. Am J Respir Crit Care Med, 2017, 195:1022-1032.
[16] LUO J C, SU Y, DONG L L, et al. Trendelenburg maneuver predicts fluid responsiveness in patients on veno-arterial extracorporeal membrane oxygenation[J]. Ann Intensive Care, 2021, 11(1):16.
[17] WELKER C C, MIELKE J A R, RAMAKRISHNA H, et al. Levosimendan and low cardiac output after cardiac surgery: analysis of trial data[J]. J Cardiothorac Vasc Anesth, 2023, 37(7):1294-1297.
[18] LANDONI G, LOMIVOROTOV V V, ALVARO G, et al. Levosimendan for hemodynamic support after cardiac surgery[J]. N Engl J Med, 2017, 376(21):2021-2031.
[19] STEPHENS R S, WHITMAN G J R. Postoperative critical care of the adult cardiac surgical patient. Part Ⅰ: routine postoperative care[J]. Crit Care Med, 2015, 43:1477-1497.
[20] NAGPAL A D, SINGAL R K, ARORA R C, et al. Temporary mechanical circulatory support in cardiac critical care: a state of the art review and algorithm for device selection[J]. Can J Cardiol, 2017, 33:110-118.
[21] KANTROWITZ A, TJΦNNELAND S, FREED P S, et al. Initial clinical experience with intraaortic balloon pumping in cardiogenic shock[J]. JAMA, 1968, 203(2):113-118.
[22] DARRAH W C, SHARPE M D, GUIRAUDON G M, et al. Intraaortic balloon counterpulsation improves right ventricular failure resulting from pressure overload[J]. Ann Thorac Surg, 1997, 64:1718-1723.
[23] HEUTS S, LORUSSO R, MAURO M, et al. Sheathless versus sheathed intra-aortic balloon pump implantation in patients undergoing cardiac surgery[J]. Am J Cardiol, 2023, 189:86-92.
[24] COCHRAN R P, STARKEY T D, PANOS A L, et al. Ambulatory intraaortic balloon pump use as bridge to heart transplant[J]. Ann Thorac Surg, 2002, 74:746-751.
[25] BROWN M A, SHEIKH F H, AHMED S, et al. Intra-aortic balloon pump as a bridge to durable left ventricular assist device[J]. J Am Heart Assoc, 2021, 10(15):E019376.
[26] THIELE H, ZEYMER U, THELEMANN N, et al. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction: long-term 6-year outcome of the randomized IABP-SHOCK Ⅱ Trial[J]. Circulation, 2019, 139(3):395-403.
[27] ANDERSON M B, GOLDSTEIN J, MILANO C, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device[J]. J Heart Lung Transplant, 2015, 34(12):1549-1560.
[28] PAPOLOS A I, BARNETT C F, TULI A, et al. Impella management for the cardiac intensivist[J]. ASAIO, 2022, 68(6):753-758.
[29] HILL J D, O’BRIEN T G, MURRAY J J, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung[J]. N Engl J Med, 1972, 286:629-634.
[30] WELKER C C, HUANG J, BOSWELL M R, et al. Left ventricular decompression in VA-ECMO: analysis of techniques and outcomes[J]. J cardiothorac Vasc Anesth, 2022, 36(11):4192-4197.
[31] SCHRAGE B, BECHER P M, BERNHARDT A, et al. Left ventricular unloading is associated with lower morta-lity in patients with cardiogenic shock treated with venoarterial extracorporeal membrane oxygenation: results from an international, multicenter cohort study[J]. Circulation, 2020, 142(22):2095-2106.
[32] MONLINA E J, SHAH P, KIERNAN M S, et al. The so-ciety of thoracic surgeons intermacs 2020 annual report[J]. Ann Thorac Surg, 2021, 111:778-802.
[33] MEHRA M R, GOLDSTEIN D J, CLEVELAND J C, et al. Five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial[J]. JAMA, 2022, 328(12):1233-1242.
[34] VARSHNEY A S, DEFILIPPIS E M, COWGER J A, et al. Trends and outcomes of left ventricular assist device therapy[J]. JACC, 2022, 79(11):1092-1107.
文章导航

/