作者简介:元旭(1989-), 男, 硕士生, 研究方向:分子植物病理学;
通讯作者: 陈捷(1959-), 男, 博士, 教授, 博士生导师, 研究方向:植物病虫害综合防治, 环境微生物与生物农药基因工程, E-mail:
收稿日期: 2014-11-13
网络出版日期: 2016-03-08
基金资助
现代农业产业体系(CARS-02);国家自然科学基金项目(31270155);上海市基础研究重点项目(12JC1404600)
Dichlorvos Degradation by REMI Mutants of Trichoderma koningii
Received date: 2014-11-13
Online published: 2016-03-08
本研究对木霉菌T30野生株和限制性内切酶介导的DNA整合技术(REMI)构建的突变株进行降解敌敌畏能力和最佳条件的研究。结果表明, 野生株和几个REMI突变株均能降解有机磷农药敌敌畏, 但以突变株TK-3降解活性最高, 其降解效率达98%。TK-3突变株降解有机磷农药效率取决于葡萄糖剂量、敌敌畏初始浓度、初始pH等。突变株降解敌敌畏的葡萄糖最佳浓度为1 000 μg/mL, 最适pH为7.0, 敌敌畏浓度500 μg/mL。敌敌畏浓度超过1 000 μg/mL则会抑制木霉菌降解能力。
关键词: 康氏木霉; 限制性内切酶介导基因合技术(REMI); 敌敌畏; 降解
元旭, 菅丽萍, 陈捷 . 木霉菌REMI突变菌株在降解敌敌畏中的作用[J]. 上海交通大学学报(农业科学版), 2016 , 34(1) : 85 -90 . DOI: 10.3969/J.ISSN.1671-9964.2016.01.015
The dichlorvos degradation abilities of Trichoderma koningii mutants obtained by REMI (restriction enzyme mediated integration) and the optimal conditions for effective degradation were studied.Results showed both the wild type (T30) and mutants (TK-1, TK-2, TK-3, TK-5, TK-7, TK-8, TK-21, TK-38, TK-53, TK-30, TK-42)were able to degrade dichlorvos.TK-3 could reach 98% dichlorvos decomposition, which is the most efficient among mutants.Dichlorvos degradation rate was closely associated with glucose, dichlorvos initial concentration and pH of the medium.It was found that glucose at 1 000 μg/mL, pH 7.0 and dichlorvos at 500 μg/mL were the optimal conditions for effectively degrading dichlorvos by the mutant TK-3.The degradation efficiency of TK-3 would decline if dichlorvos concentration exceeded 1 000 μg/mL.
[1] | Brotman Y, Landau U, Cuadros-Inostroza á, et al.Trichoderma-plant root colonization:escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance[J].PLoS Pathogens, 2013, 9(3):e1003221. |
[2] | Monte E.Understanding Trichoderma:between biotechnology and microbial ecology[J].International Microbiology, 2010, 4(1):1-4. |
[3] | Mohamed Z A, Hashem M, Alamri S A.Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride[J].Toxicon, 2014, 86:51-58. |
[4] | Fu K H, Fan L L, Li Y Y, et al.Tmac1, a transcription factor which regulated high affinity copper transport in Trichoderma reesei[J].Microbiological Research, 2012, 167(9):536-543. |
[5] | Zhao X H, Wang J.A brief study on the degradation kinetics of seven organophosphorus pesticides in skimmed milk cultured with Lactobacillus spp. at 42° C[J].Food Chemistry, 2012, 131(1):300-304. |
[6] | Porras-Alfaro A, Bayman P.Hidden fungi, emergent properties:endophytes and microbiomes[J].Phytopathology, 2011, 49(1):291-315. |
[7] | Carreras-Villase?or N, Sánchez-Arreguín J A, Herrera-Estrella A H.Trichoderma:sensing the environment for survival and dispersal[J].Microbiology, 2012, 158(1):3-16. |
[8] | L?rz H, Baker B, Schell J.Gene transfer to cereal cells mediated by protoplast transformation[J].Molecular and General Genetics MGG, 1985, 199(2):178-182. |
[9] | Woloshuk C, Seip E, Payne G, et al.Genetic transformation system for the aflatoxin-producing fungus Aspergillus flavus[J].Applied and Environmental Microbiology, 1989, 55(1):86-90. |
[10] | Sun W L, Chen Y P, Liu L X, et al.Conidia immobilization of T-DNA inserted Trichoderma atroviride mutant AMT-28 with dichlorvos degradation ability and exploration of biodegradation mechanism[J].Bioresource Technology, 2010, 101(23):9197-9203. |
[11] | Fu K H, Liu L X, Fan L L, et al.Accumulation of copper in Trichoderma reesei transformants, constructed with the modified Agrobacterium tumefaciens-mediated transformation technique[J].Biotechnology Letters, 2010, 32(12):1815-1820. |
[12] | Liu S W, Wang Z Y, Guo Z J.Isolation and transformation of Trichoderma viride protoplasts[J].Chinese Journal of Agricultural Biotechnology, 2004, 1(02):67-72. |
[13] | Zhou X Y, Xu S F, Liu L X, et al.Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration(REMI)[J].Bioresource Technology, 2007, 98(15):2958-2962. |
[14] | Huang Y Q, Liang C H, Chen J.Production and Regeneration of Trichoderma Strain T23 Protoplast[J].Journal of Jilin Agricultural University, 2007, 29(1):24-27. |
[15] | Tang J, Li Y Y, Fu K H, et al.Disruption of hex1 in Trichoderma atroviride leads to loss of Woronin body and decreased tolerance to dichlorvos[J].Biotechnology Letters, 2014, 36(4):751-759. |
[16] | 孙文良, 胡晓璐, 吴萌章等.根癌农杆菌介导的深绿木霉菌T23遗传转化研究[J].上海交通大学学报(农业科学版), 2009, 27(5):489-493. |
[16] | Sun W L, Hu X L, Wu M Z, et al.Agrobacterium tumefaciens-mediated Transformation(ATMT)of Trichoderma atroviride T23[J].Journal of Shanghai Jiaotong University(Agricultural science), 2009, 27(5):489-493. |
/
〈 |
|
〉 |
沪交ICP备05221 版权所有:《上海交通大学学报(农业科学版)》编辑部 主管单位:中华人民共和国教育部 主办单位:上海交通大学 出版单位:上海交通大学学报编辑部 地址:上海市七莘路2678号 上海交通大学七宝校区36号信箱 邮政编码:201101 电话:021-64789728 电子邮件:xuebao@sjtu.edu.cn |