J Shanghai Jiaotong Univ Sci ›› 2021, Vol. 26 ›› Issue (4): 503-510.doi: 10.1007/s12204-020-2239-3
• Computer & Communication Engineering • Previous Articles Next Articles
ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun *(汪军)
Online:
2021-08-28
Published:
2021-06-06
Contact:
WANG Jun *(汪军)
E-mail:junwang@dhu.edu.cn
CLC Number:
ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510.
[1] | WANG R W, WU X Y, WANG S Y, et al. Automaticidentification of ramie and cotton fibers using characteristicsin longitudinal view, Part I: Locating captureof fiber images [J]. Textile Research Journal, 2009,79(14): 1251-1259. |
[2] | STIVANELLO M E, VARGAS S, ROLOFF M L, et al. Automatic detection and classification of defects inknitted fabrics [J]. IEEE Latin America Transactions,2016, 14(7): 3065-3073. |
[3] | LI Y, ZHANG C. Automated vision system for fabric defect inspection using Gabor filters and PCNN [J].Springer Plus, 2016, 5(1): 765. |
[4] | YANGW, LI D, ZHU L, et al. A new approach for imageprocessing in foreign fiber detection [J]. Computersand Electronics in Agriculture, 2009, 68(1): 68-77. |
[5] | SU Z, TIAN G Y, GAO C. A machine vision system for on-line removal of contaminants in wool [J]. Mechatronics,2006, 16(5): 243-247. |
[6] | CHEN X, HUANG X B. Evaluating fabric pilling with light-projected image analysis [J]. Textile Research Journal, 2004, 74(11): 977-981. |
[7] | KIM S C, KANG T J. Image analysis of standard pilling photographs using wavelet reconstruction [J].Textile Research Journal, 2005, 75(12): 801-811. |
[8] | PARK C K, KANG T J. Objective rating of seam pucker using neural networks [J]. Textile Research Journal, 1997, 67(7): 494-502. |
[9] | PARK C K, KANG T J. Objective evaluation of seam pucker using artificial intelligence, Part I: Geometric modeling of seam pucker [J]. Textile Research Journal,1999, 69(10): 735-742. |
[10] | LIU C. Investigation on the novel measurement for fabric wrinkle simulating actual wear [J]. The Journal of The Textile Institute, 2017, 108(2): 279-286. |
[11] | ZHANG N, PAN R R, GAO W D. Automatic seampuckering evaluation using image processing [J]. Journal of Textile Research, 2017, 38(4): 145-150 (in Chinese). |
[12] | SU J, XU B. Fabric wrinkle evaluation using laser triangulation and neural network classifier [J]. Optical Engineering, 1999, 38(10): 1688-1693. |
[13] | BARI A S M H, GAVRILOVA M L. Artificial neural network based gait recognition using Kinect sensor [J].IEEE Access, 2019, 7: 162708-162722. |
[14] | GAO G, W¨UTHRICH M V. Convolutional neural network classification of telematics car driving data [J].Risks, 2019, 7(1): 6. |
[15] | SERGEEV A, DEL BALSO M. Horovod: Fast and easy distributed deep learning in TensorFlow [DB/OL]. (2018-02-15) [2019-11-25].https://arxiv.org/abs/1802.05799. |
[16] | ABRIL H C, MILL′AN M S, VALENCIA E. Influence of the wrinkle perception with distance in the objective evaluation of fabric smoothness [J]. Journal of Optics A: Pure and Applied Optics, 2008, 10(10): 104030. |
[1] | PAN Meiqi, HE Xing. A Fault Diagnosis Method for Wind Turbines Based on Zero-Shot Learning [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 561-568. |
[2] | QIN Hao, SU Liwei, WU Guangbin, JIANG Chongying, XU Zhipeng, KANG Feng, TAN Huochao, ZHANG Yongjun. Short-Term Telephone-Traffic Prediction of Power Grid Customer Service Based on Adaboost-CNN [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 266-273. |
[3] | ZHOU Su (周苏), ZHONG Zebin∗ (钟泽滨). Real-Time Ranging of Vehicles and Pedestrians for Mobile Application on Smartphones [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090. |
[4] | JIANG Yilin1, 2∗ (蒋伊琳), LI Xiang1, 2 (李向), ZHANG Haoping3 (张昊平). Emitter Beam State Sensing Based on Convolutional Neural Network and Received Signal Strength [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1017-1022. |
[5] | LU Wen’an, ZHU Qingxiao, LI Zhaowei, LIU Hui, YU Yiping. A Prediction Method of New Power System Frequency Characteristics Based on Convolutional Neural Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1500-1512. |
[6] | QIN Jing, WEN Yuanbo, GAO Tao, LIU Yao. A Transformer-Based Diffusion Model for All-in-One Weather-Degraded Image Restoration [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1606-1617. |
[7] | GU Wen (顾闻), XU Yi∗ (徐奕). Retinal Vessel Segmentation via Adversarial Learning and Iterative Refinement [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 73-80. |
[8] | ZHAN Ke, ZHU Renchuan. A CNN-LSTM Ship Motion Extreme Value Prediction Model [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 963-971. |
[9] | ZHANG Zelong, ZHANG Yingchao, WU Bo, DONG Wei, FAN Youben. Real-Time Laser Speckle Imaging of Blood Flow with High Gray Level and High Resolution [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 552-559. |
[10] | LI Qing, HUANGFU Yubin, LI Jiangyun, YANG Zhifang, CHEN Peng, WANG Zihan. UConvTrans:A Dual-Flow Cardiac Image Segmentation Network by Global and Local Information Integration [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 570-581. |
[11] | GAO Tao, WEN Yuanbo, CHEN Ting, ZHANG Jing. A Single Image Deraining Algorithm Based on Swin Transformer [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 613-623. |
[12] | HUANG He, HU Kaiyi, LI Zhanyi, WANG Huifeng, RU Feng, WANG Jun. An Image Dehazing Method for UAV Aerial Photography of Buildings Combining MCAP and GRTV Regularization [J]. Journal of Shanghai Jiao Tong University, 2023, 57(3): 366-378. |
[13] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[14] | SUN Yanyi, FAN Wenjing, ZENG Yuanfan, GAN Xingye, TANG Rijia, HAN Rui. Loading Target Identification Method Based on Harris Corner Detection [J]. Air & Space Defense, 2022, 5(4): 87-91. |
[15] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||