Please wait a minute...
Nano-Micro Letters  2024, Vol. 16 Issue (1): 175-    DOI: 10.1007/s40820-024-01382-9
  本期目录 | 过刊浏览 | 高级检索 |
Fan He1, Yingnan Liu1, Xiaoxuan Yang1, Yaqi Chen1, Cheng-Chieh Yang5, Chung-Li Dong5, Qinggang He1, Bin Yang1, Zhongjian Li1, Yongbo Kuang3, Lecheng Lei1, Liming Dai6, Yang Hou1,2,4()
Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization
Fan He1, Yingnan Liu1, Xiaoxuan Yang1, Yaqi Chen1, Cheng-Chieh Yang5, Chung-Li Dong5, Qinggang He1, Bin Yang1, Zhongjian Li1, Yongbo Kuang3, Lecheng Lei1, Liming Dai6, Yang Hou1,2,4()
1 Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People’s Republic of China
2 Institute of Zhejiang University - Quzhou, Quzhou, 324000, People’s Republic of China
3 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People’s Republic of China
4 School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, People’s Republic of China
5 Department of Physics, Tamkang University, New Taipei, 25137, Taiwan, People’s Republic of China
6 Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2051, Australia
全文: PDF(5993 KB)   HTML
输出: BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Fan He
Yingnan Liu
Xiaoxuan Yang
Yaqi Chen
Cheng-Chieh Yang
Chung-Li Dong
Qinggang He
Bin Yang
Zhongjian Li
Yongbo Kuang
Lecheng Lei
Liming Dai
Yang Hou
Abstract

Metal-organic frameworks (MOFs) have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity, but the limited catalytic activity and stability has hampered their practical use in water splitting. Herein, we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs (donated as AE-CoNDA) to serve as efficient catalyst for water splitting. AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm−2 and a small Tafel slope of 62 mV dec−1 with excellent stability over 100 h. After integrated AE-CoNDA onto BiVO4, photocurrent density of 4.3 mA cm−2 is achieved at 1.23 V. Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p, which accounts for the fast kinetics and high activity. Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.

Key wordsMetal-organic frameworks    Bond length adjustment    Spin state transition    Orbitals hybridization    Water splitting
收稿日期: 2023-12-17      出版日期: 2024-04-19
通讯作者: Yang Hou   
引用本文:   
Fan He, Yingnan Liu, Xiaoxuan Yang, Yaqi Chen, Cheng-Chieh Yang, Chung-Li Dong, Qinggang He, Bin Yang, Zhongjian Li, Yongbo Kuang, Lecheng Lei, Liming Dai, Yang Hou. [J]. Nano-Micro Letters, 2024, 16(1): 175-.
Fan He, Yingnan Liu, Xiaoxuan Yang, Yaqi Chen, Cheng-Chieh Yang, Chung-Li Dong, Qinggang He, Bin Yang, Zhongjian Li, Yongbo Kuang, Lecheng Lei, Liming Dai, Yang Hou. Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization. Nano-Micro Letters, 2024, 16(1): 175-.
链接本文:  
https://www.qk.sjtu.edu.cn/nml/CN/10.1007/s40820-024-01382-9      或      https://www.qk.sjtu.edu.cn/nml/CN/Y2024/V16/I1/175
Fig. 1  
Fig. 2  
Fig. 3  
Fig. 4  
Fig. 5  
1.
M. Crespo-Quesada, L.M. Pazos-Outón, J. Warnan, M.F. Kuehnel, R.H. Friend et al., Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 12555 (2016).
2.
X. Yu, V.L. Zholobenko, S. Moldovan, D. Hu, D. Wu et al., Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 5, 511-519 (2020).
3.
J.Z. Zhang, E. Reisner, Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6-21 (2020).
4.
T. Bouwens, T.M.A. Bakker, K. Zhu, J. Hasenack, M. Dieperink et al., Using supramolecular machinery to engineer directional charge propagation in photoelectrochemical devices. Nat. Chem. 15, 213-221 (2023).
5.
V. Andrei, G.M. Ucoski, C. Pornrungroj, C. Uswachoke, Q. Wang et al., Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature 608, 518-522 (2022).
6.
X. You, D. Zhang, X.-G. Zhang, X. Li, J.-H. Tian et al., Exploring the cation regulation mechanism for interfacial water involved in the hydrogen evolution reaction by in situ Raman spectroscopy. Nano-Micro Lett. 16, 53 (2023).
7.
S. Lyu, C. Guo, J. Wang, Z. Li, B. Yang et al., Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks. Nat. Commun. 13, 6171 (2022).
8.
K. Wang, Y. Wang, B. Yang, Z. Li, X. Qin et al., Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy Environ. Sci. 15, 2356-2365 (2022).
9.
D.Y. Chung, P.P. Lopes, P. Farinazzo Bergamo Dias Martins, H. He, T. Kawaguchi et al., Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222-230 (2020).
10.
Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329-338 (2019).
11.
Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang et al., Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity. Chem 3, 812-821 (2017).
12.
R.R. Rao, I.E.L. Stephens, J.R. Durrant, Understanding what controls the rate of electrochemical oxygen evolution. Joule 5, 16-18 (2021).
13.
H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49, 1414-1448 (2020).
14.
X. Zhou, B. Fu, L. Li, Z. Tian, X. Xu et al., Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction. Nat. Commun. 13, 5770 (2022).
15.
J. Xie, F. Wang, Y. Zhou, Y. Dong, Y. Chai et al., Internal polarization field induced hydroxyl spillover effect for industrial water splitting electrolyzers. Nano-Micro. Lett. 16, 39 (2023).
16.
X. Ling, F. Du, Y. Zhang, Y. Shen, W. Gao et al., Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 9, 13271-13278 (2021).
17.
V. Andrei, R.A. Jagt, M. Rahaman, L. Lari, V.K. Lazarov et al., Long-term solar water and CO2 splitting with photoelectrochemical BiOI-BiVO4 tandems. Nat. Mater. 21, 864-868 (2022).
18.
H. Wu, L. Zhang, A. Du, R. Irani, R. van de Krol et al., Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping. Nat. Commun. 13, 6231 (2022).
19.
L.-W. Wu, C. Liu, Y. Han, Y. Yu, Z. Liu et al., In situ spectroscopic identification of the electron-transfer intermediates of photoelectrochemical proton-coupled electron transfer of water oxidation on Au. J. Am. Chem. Soc. 145, 2035-2039 (2023).
20.
X. Zhang, P. Zhai, Y. Zhang, Y. Wu, C. Wang et al., Engineering single-atomic Ni-N4-O sites on semiconductor photoanodes for high-performance photoelectrochemical water splitting. J. Am. Chem. Soc. 143, 20657-20669 (2021).
21.
Y. Qi, J. Zhang, Y. Kong, Y. Zhao, S. Chen et al., Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commun. 13, 484 (2022).
22.
D. Lee, W. Wang, C. Zhou, X. Tong, M. Liu et al., The impact of surface composition on the interfacial energetics and photoelectrochemical properties of BiVO4. Nat. Energy 6, 287-294 (2021).
23.
T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990-994 (2014).
24.
Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal-organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023).
25.
S. Zhao, C. Tan, C.-T. He, P. An, F. Xie et al., Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5, 881-890 (2020).
26.
J. Yang, Y. Shen, Y. Sun, J. Xian, Y. Long et al., Ir nanoparticles anchored on metal-organic frameworks for efficient overall water splitting under pH-universal conditions. Angew. Chem. Int. Ed. 62, e202302220 (2023).
27.
H. Hu, Z. Wang, L. Cao, L. Zeng, C. Zhang et al., Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358-366 (2021).
28.
J. Xian, S. Li, H. Su, P. Liao, S. Wang et al., Electrosynthesis of α-amino acids from NO and other NOx species over CoFe alloy-decorated self-standing carbon fiber membranes. Angew. Chem. Int. Ed. 62, e202306726 (2023).
29.
Z. Jiang, X. Xu, Y. Ma, H.S. Cho, D. Ding et al., Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586, 549-554 (2020).
30.
Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li et al., Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 10, 5048 (2019).
31.
W. Cheng, X. Zhao, H. Su, F. Tang, W. Che et al., Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115-122 (2019).
32.
Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li et al., Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 12, 1369 (2021).
33.
K. Liu, J. Fu, Y. Lin, T. Luo, G. Ni et al., Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 13, 2075 (2022).
34.
F. Cheng, X. Peng, L. Hu, B. Yang, Z. Li et al., Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production. Nat. Commun. 13, 6486 (2022).
35.
F. He, Q. Zheng, X. Yang, L. Wang, Z. Zhao et al., Spin-state modulation on metal-organic frameworks for electrocatalytic oxygen evolution. Adv. Mater. 35, e2304022 (2023).
36.
L. Zhang, R. Long, Y. Zhang, D. Duan, Y. Xiong et al., Direct observation of dynamic bond evolution in single-atom Pt/C3 N4 catalysts. Angew. Chem. Int. Ed. Engl. 59, 6224-6229 (2020).
37.
W.H. Lee, M.H. Han, Y.J. Ko, B.K. Min, K.H. Chae et al., Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 13, 605 (2022).
38.
H. Tao, Y. Xu, X. Huang, J. Chen, L. Pei et al., A general method to probe oxygen evolution intermediates at operating conditions. Joule 3, 1498-1509 (2019).
39.
S. Chibani, C. Michel, F. Delbecq, C. Pinel, M. Besson, On the key role of hydroxyl groups in platinum-catalysed alcohol oxidation in aqueous medium. Catal. Sci. Technol. 3, 339-350 (2013).
40.
X. Kang, K. Lyu, L. Li, J. Li, L. Kimberley et al., Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. Nat. Commun. 10, 4466 (2019).
41.
F. He, Y. Zhao, X. Yang, S. Zheng, B. Yang et al., Metal-organic frameworks with assembled bifunctional microreactor for charge modulation and strain generation toward enhanced oxygen electrocatalysis. ACS Nano 16, 9523-9534 (2022).
42.
J.-Y. Zhang, Y. Yan, B. Mei, R. Qi, T. He et al., Local spin-state tuning of cobalt-iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 14, 365-373 (2021).
43.
B.E. Van Kuiken, M. Khalil, Simulating picosecond iron K-edge X-ray absorption spectra by ab initio methods to study photoinduced changes in the electronic structure of Fe(II) spin crossover complexes. J. Phys. Chem. A 115, 10749-10761 (2011).
44.
G. Zhou, P. Wang, H. Li, B. Hu, Y. Sun et al., Spin-sate reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Nat. Commun. 12, 4827 (2021).
45.
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383-1385 (2011).
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed