Mustafa Khan1, Suxia Yan1(), Mujahid Ali2, Faisal Mahmood2, Yang Zheng1, Guochun Li1, Junfeng Liu1(), Xiaohui Song3, Yong Wang1()
Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries: Overcoming Challenges and Real-World Applications
Mustafa Khan1, Suxia Yan1(), Mujahid Ali2, Faisal Mahmood2, Yang Zheng1, Guochun Li1, Junfeng Liu1(), Xiaohui Song3, Yong Wang1()
1 Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, Jiangsu, People’s Republic of China 2 School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People’s Republic of China 3 School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People’s Republic of China
Silicon (Si) has emerged as a potent anode material for lithium-ion batteries (LIBs), but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation, leading to material pulverization and capacity degradation. Recent research on nanostructured Si aims to mitigate volume expansion and enhance electrochemical performance, yet still grapples with issues like pulverization, unstable solid electrolyte interface (SEI) growth, and interparticle resistance. This review delves into innovative strategies for optimizing Si anodes’ electrochemical performance via structural engineering, focusing on the synthesis of Si/C composites, engineering multidimensional nanostructures, and applying non-carbonaceous coatings. Forming a stable SEI is vital to prevent electrolyte decomposition and enhance Li+ transport, thereby stabilizing the Si anode interface and boosting cycling Coulombic efficiency. We also examine groundbreaking advancements such as self-healing polymers and advanced prelithiation methods to improve initial Coulombic efficiency and combat capacity loss. Our review uniquely provides a detailed examination of these strategies in real-world applications, moving beyond theoretical discussions. It offers a critical analysis of these approaches in terms of performance enhancement, scalability, and commercial feasibility. In conclusion, this review presents a comprehensive view and a forward-looking perspective on designing robust, high-performance Si-based anodes the next generation of LIBs.
Utilization of CNFs and CNTs to construct conductive networks and host matrices for Si-based anode materials, handling volume changes during charging/discharging. Examples include C-L-SC, Si@CNTs, and Si/CNFs
High scalability due to established manufacturing techniques for CNFs/CNTs
Good, considering growing demand in energy storage technologies
2D Carbon-Si Composites
Graphene and MXene Integration with Si
Incorporation of graphene and MXenes with Si, resulting in structures like Si@G, Si@N-G, and MXene/Si@SiOx@C. Enhanced by the surface area and conductivity of graphene and the unique properties of MXenes
Moderate, challenges in large-scale production of quality graphene and MXenes
Promising, but dependent on cost reduction and production advancements
3D Carbon-Si Composites
Porous Carbon and Graphite Integration with Si
Development of composites like gigaporous carbon microspheres and Si/graphite/carbon (Si-G/C) composites, leveraging the structural benefits of 3D carbon materials
High, given the existing large-scale production for porous carbon and graphite
Very feasible, especially in markets demanding high-performance batteries
Table 6
Nanostructure type
Strategy/composition
Description
Scalability potential
Commercial feasibility
0D Si-based anode materials
Si nanoparticles and composites
Utilization of porous Si nanoparticles and composites, including Si@TiO2 and Si/Ti2O3/rGO. Techniques include electroless etching, self-assembly, CVD
Moderate, challenges in consistent quality production at scale
Emerging, hinges on integration with current battery manufacturing processes
1D Si-based anode materials
Si nanowires (SiNWs) and nanotubes (SiNTs)
Development of 1D structures like SiNWs and SiNTs using CVD and other methods. Examples include Si@NC, carbon-coated SiNWs
High for SiNWs with established methods; moderate for SiNTs due to complexity
Promising, particularly for high-end applications requiring advanced battery properties
2D Si-based anode materials
Si thin films
Application of Si thin films on substrates, e.g., amorphous Si on Cu. Techniques include electrodeposition and magnetron sputtering
Moderate, dependent on deposition technologies and material handling
Feasible, with potential in niche markets and specialty applications
3D Si-based anode materials
3D macroporous Si structures
Creation of 3D macroporous Si using methods like magnesiothermic reduction and galvanic displacement. Examples include Si@C electrodes and hollow Si nanospheres
High, especially with advancements in 3D material synthesis techniques
Good, subject to demonstration of long-term durability and cost-effectiveness
Table 7
Material type
Strategy/composition
Description
Scalability potential
Commercial feasibility
SiOx/C composites
Encapsulation of SiOx in Carbon
Utilization of carbon matrices to encapsulate SiOx, enhancing electron/ion transport and forming a stable SEI layer. Examples include 3D-Si@SiOx/C, SiOx/C from rice husk
High, leveraging existing carbon material production infrastructures
Very promising, especially if cost-effectiveness is achieved
Si with non-carbonaceous materials
Core-shell structures with metals/metal oxides
Development of core-shell structures combining Si with metals/metal oxides like TiO2, SnO2, Nb2O5. Techniques include CVD, solvothermal methods
Moderate, challenges in uniform core-shell structuring at scale
Emerging, with potential in high-performance battery sectors
Table 8
Aspect
Strategy/Technique
Description
Scalability potential
Commercial feasibility
Artificial solid electrolyte interphase (ASEI) for Si anode
Engineered design of ASEI
Construction of artificial SEI layers using ex situ and in situ techniques to provide a robust protective layer on the anode
Moderate, requires precise control over layer formation
Promising, essential for high-capacity, long-life batteries
Prelithiation of anode material
Various prelithiation Techniques
Techniques like lithium foil contact (LFC), stabilized Lithium Metal Powder (SLMP), and chemical prelithiation to compensate for lithium loss
High, especially with advancements in lithiation technologies
Very feasible, can significantly enhance the market competitiveness of Si-based LIBs
Effect of binder
Use of advanced binders
Exploration of alternative binders (e.g., alginate, PAA, SHP) tailored for Si-based anodes to accommodate extensive volume changes
High, as alternative binders can be integrated into existing battery production lines
Very promising, especially for advanced batteries requiring high stability and performance
Table 9
1.
C.Zhang, F.Wang, J.Han, S.Bai, J.Tan et al., Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries. Small Struct. 2, 2170015 (2021).
2.
F.Dou, L.Shi, G.Chen, D.Zhang, Silicon/carbon composite anode materials for lithium-ion batteries. Electrochem. Energy Rev.2, 149-198 (2019).
3.
W.Tao, P.Wang, Y.You, K.Park, C.-Y.Wang et al., Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Res.12, 1739-1749 (2019).
4.
J.Wang, W.Huang, Y.S.Kim, Y.K.Jeong, S.C.Kim et al., Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res.13, 1558-1563 (2020).
5.
Y.-X.Yao, C.Yan, Q.Zhang, Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chem. Commun. 56, 14570-14584 (2020).
6.
L.Kraft, J.B.Habedank, A.Frank, A.Rheinfeld, A.Jossen, Modeling and simulation of pore morphology modifications using laser-structured graphite anodes in lithium-ion batteries. J. Electrochem. Soc.167, 013506 (2019).
7.
X.Gao, W.Lu, J.Xu, Insights into the Li diffusion mechanism in Si/C composite anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces13, 21362-21370 (2021).
8.
K.Feng, M.Li, W.Liu, A.G.Kashkooli, X.Xiao et al., Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small14, 1702737 (2018).
9.
T.-F.Yi, Y.-R.Zhu, W.Tao, S.Luo, Y.Xie et al., Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J. Power. Sources399, 26-41 (2018).
10.
Z.Chen, Y.Cao, J.Qian, X.Ai, H.Yang, Pb-sandwiched nanoparticles as anode material for lithium-ion batteries. J. Solid State Electrochem. 16, 291-295 (2012).
11.
Q.Li, C.Xu, L.Yang, K.Pei, Y.Zhao et al., Pb/C composite with spherical Pb nanoparticles encapsulated in carbon microspheres as a high-performance anode for lithium-ion batteries. ACS Appl. Energy Mater. 3, 7416-7426 (2020).
12.
Y.Chen, J.Li, G.Yue, X.Luo, Novel Ag@Nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano-Micro Lett. 9, 32 (2017).
13.
X.Liu, X.-Y.Wu, B.Chang, K.-X.Wang, Recent progress on germanium-based anodes for lithium ion batteries: efficient lithiation strategies and mechanisms. Energy Storage Mater. 30, 146-169 (2020).
14.
A.Casimir, H.Zhang, O.Ogoke, J.C.Amine, J.Lu et al., Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy27, 359-376 (2016).
15.
H.Tian, X.Tan, F.Xin, C.Wang, W.Han, Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy11, 490-499 (2015).
16.
M.Salah, P.Murphy, C.Hall, C.Francis, R.Kerr et al., Pure silicon thin-film anodes for lithium-ion batteries: a review. J. Power. Sources414, 48-67 (2019).
17.
C.K.Chan, H.Peng, G.Liu, K.McIlwrath, X.F.Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31-35 (2008).
18.
J.Wang, L.Liao, Y.Li, J.Zhao, F.Shi et al., Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett. 18, 7060-7065 (2018).
19.
Y.Jin, B.Zhu, Z.Lu, N.Liu, J.Zhu, Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 7, 1700715 (2017).
20.
P.Sehrawat, A.Shabir, C.M.Julien, S.S.Islam, Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries. J. Power. Sources501, 229709 (2021).
21.
F.Zhang, G.Zhu, K.Wang, X.Qian, Y.Zhao et al., Boosting the initial coulombic efficiency in silicon anodes through interfacial incorporation of metal nanocrystals. J. Mater. Chem. A7, 17426-17434 (2019).
22.
Z.Bitew, M.Tesemma, Y.Beyene, M.Amare, Nano-structured silicon and silicon based composites as anode materials for lithium ion batteries: recent progress and perspectives. Sustain. Energy Fuels6, 1014-1050 (2022).
C.Zhu, K.Han, D.Geng, H.Ye, X.Meng, Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings: an overview. Electrochim. Acta251, 710-728 (2017).
25.
D.Uxa, B.Jerliu, E.Hüger, L.Dörrer, M.Horisberger et al., On the lithiation mechanism of amorphous silicon electrodes in Li-ion batteries. J. Phys. Chem. C123, 22027-22039 (2019).
26.
S.Zhang, Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries. npj Comput. Mater. 3, 7 (2017).
27.
X.Chen, H.Li, Z.Yan, F.Cheng, J.Chen, Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Sci. China Mater. 62, 1515-1536 (2019).
28.
S.Misra, N.Liu, J.Nelson, S.S.Hong, Y.Cui et al., In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. ACS Nano6, 5465-5473 (2012).
29.
Z.Zhang, N.Liao, H.Zhou, W.Xue, Insight into silicon-carbon multilayer films as anode materials for lithium-ion batteries: a combined experimental and first principles study. Acta Mater. 178, 173-178 (2019).
30.
Y.Zhang, N.Du, D.Yang, Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries. Nanoscale11, 19086-19104 (2019).
31.
R.E.Ruther, K.A.Hays, S.J.An, J.Li, D.L.Wood et al., Chemical evolution in silicon-graphite composite anodes investigated by vibrational spectroscopy. ACS Appl. Mater. Interfaces10, 18641-18649 (2018).
32.
F.Shi, Z.Song, P.N.Ross, G.A.Somorjai, R.O.Ritchie et al., Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nat. Commun. 7, 11886 (2016).
33.
F.Luo, B.Liu, J.Zheng, G.Chu, K.Zhong et al., Review—nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries. J. Electrochem. Soc.162, A2509-A2528 (2015).
34.
Q.Shi, J.Zhou, S.Ullah, X.Yang, K.Tokarska et al., A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Storage Mater. 34, 735-754 (2021).
35.
S.You, H.Tan, L.Wei, W.Tan, C.Chao, Li Design strategies of Si/C composite anode for lithium-ion batteries. Chemistry27, 12237-12256 (2021).
H.Zhang, X.Zhang, H.Jin, P.Zong, Y.Bai et al., A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes. Chem. Eng. J.360, 974-981 (2019).
41.
J.Su, J.Zhao, L.Li, C.Zhang, C.Chen et al., Three-dimensional porous Si and SiO2 with in situ decorated carbon nanotubes As anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces9, 17807-17813 (2017).
42.
Y.-J.Qiao, H.Zhang, Y.-X.Hu, W.-P.Li, W.-J.Liu et al., A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries. Int. J. Miner. Metall. Mater. 28, 1611-1620 (2021).
43.
S.Cui, S.Chen, L.Deng, Si nanoparticles encapsulated in CNTs arrays with tubular sandwich structure for high performance Li ion battery. Ceram. Int.46, 3242-3249 (2020).
44.
H.Lu, W.Chen, Q.Liu, C.Pang, L.Xue et al., Si/Cu3Si@C composite encapsulated in CNTs network as high performance anode for lithium ion batteries. J. Wuhan Univ. Technol. Mater. Sci. Ed.34, 1055-1061 (2019).
45.
Y.Xu, Y.Zhu, F.Han, C.Luo, C.Wang, 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv. Energy Mater. 5, 1400753 (2015).
46.
R.Cong, J.-Y.Choi, J.-B.Song, M.Jo, H.Lee et al., Characteristics and electrochemical performances of silicon/carbon nanofiber/graphene composite films as anode materials for binder-free lithium-ion batteries. Sci. Rep.11, 1283 (2021).
47.
A.K.Geim, Graphene: status and prospects. Science324, 1530-1534 (2009).
48.
A.K.Geim, K.S.Novoselov, The rise of graphene. Nat. Mater. 6, 183-191 (2007).
49.
R.Raccichini, A.Varzi, S.Passerini, B.Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271-279 (2015).
50.
A.Jamaluddin, B.Umesh, F.Chen, J.-K.Chang, C.-Y.Su, Facile synthesis of core-shell structured Si@graphene balls as a high-performance anode for lithium-ion batteries. Nanoscale12, 9616-9627 (2020).
51.
A.Jamaluddin, B.Umesh, K.-H.Tseng, C.-W.Huang, F.Chen et al., Control of graphene heteroatoms in a microball Si@Graphene composite anode for high-energy-density lithium-ion full cells. ACS Sustain. Chem. Eng.8, 18936-18946 (2020).
52.
G.Lin, H.Wang, L.Zhang, Q.Cheng, Z.Gong et al., Graphene nanowalls conformally coated with amorphous/nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries. J. Power. Sources437, 226909 (2019).
53.
P.Zhang, Q.Zhu, Z.Guan, Q.Zhao, N.Sun et al., A flexible Si@C electrode with excellent stability employing an MXene as a multifunctional binder for lithium-ion batteries. ChemSusChem13, 1621-1628 (2020).
54.
C.-H.Wang, N.Kurra, M.Alhabeb, J.-K.Chang, H.N.Alshareef et al., Titanium carbide (MXene) as a current collector for lithium-ion batteries. ACS Omega3, 12489-12494 (2018).
55.
X.Zhu, J.Shen, X.Chen, Y.Li, W.Peng et al., Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries. Chem. Eng. J.378, 122212 (2019).
56.
Y.Tian, Y.An, J.Feng, Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces11, 10004-10011 (2019).
57.
Y.Zhang, Z.Mu, J.Lai, Y.Chao, Y.Yang et al., MXene/Si@SiO x@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano13, 2167-2175 (2019).
58.
X.-R.Wu, C.-H.Yu, C.-C.Li, Carbon-encapsulated gigaporous microsphere as potential Si anode-active material for lithium-ion batteries. Carbon160, 255-264 (2020).
59.
C.Xiao, P.He, J.Ren, M.Yue, Y.Huang et al., Walnut-structure Si-G/C materials with high coulombic efficiency for long-life lithium ion batteries. RSC Adv. 8, 27580-27586 (2018).
60.
X.Li, P.Yan, X.Xiao, J.H.Woo, C.Wang et al., Design of porous Si/C-graphite electrodes with long cycle stability and controlled swelling. Energy Environ. Sci.10, 1427-1434 (2017).
61.
C.Xu, B.Wang, H.Luo, P.Jing, X.Zhang et al., Embedding silicon in pinecone-derived porous carbon as a high-performance anode for lithium-ion batteries. ChemElectroChem7, 2889-2895 (2020).
62.
R.Zhou, H.Guo, Y.Yang, Z.Wang, X.Li et al., N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries. J. Alloys Compd. 689, 130-137 (2016).
63.
D.Shao, D.Tang, Y.Mai, L.Zhang, Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J. Mater. Chem. A1, 15068-15075 (2013).
64.
X.-Y.Zhou, J.-J.Tang, J.Yang, J.Xie, L.-L.Ma, Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries. Electrochim. Acta87, 663-668 (2013).
65.
J.Xie, L.Tong, L.Su, Y.Xu, L.Wang et al., Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J. Power. Sources342, 529-536 (2017).
66.
M.-S.Wang, L.-Z.Fan, M.Huang, J.Li, X.Qu, Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries. J. Power. Sources219, 29-35 (2012).
67.
Z.-L.Xu, Y.Gang, M.A.Garakani, S.Abouali, J.-Q.Huang et al., Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. J. Mater. Chem. A4, 6098-6106 (2016).
68.
Y.Chen, N.Du, H.Zhang, D.Yang, Porous Si@C coaxial nanotubes: layer-by-layer assembly on ZnO nanorod templates and application to lithium-ion batteries. CrystEngComm19, 1220-1229 (2017).
Y.Chen, Y.Hu, Z.Shen, R.Chen, X.He et al., Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. J. Power. Sources342, 467-475 (2017).
73.
X.Liu, J.Zhang, W.Si, L.Xi, B.Eichler et al., Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life. ACS Nano9, 1198-1205 (2015).
74.
J.Wu, X.Qin, H.Zhang, Y.-B.He, B.Li et al., Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon84, 434-443 (2015).
75.
D.A.Agyeman, K.Song, G.-H.Lee, M.Park, Y.-M.Kang, Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery. Adv. Energy Mater. 6, 1600904 (2016).
M.Zhang, J.Li, C.Sun, Z.Wang, Y.Li et al., Durable flexible dual-layer and free-standing silicon/carbon composite anode for lithium-ion batteries. J. Alloys Compd. 932, 167687 (2023).
78.
P.Li, C.Miao, D.Yi, Y.Wei, T.Chen et al., Pomegranate like silicon-carbon composites prepared from lignin-derived phenolic resins as anode materials for lithium-ion batteries. New J. Chem. 47, 16855-16863 (2023).
79.
L.Ma, X.Fu, F.Zhao, L.Yu, W.Su et al., Microsized silicon/carbon composite anodes through in situ polymerization of phenolic resin onto silicon microparticles for high-performance lithium-ion batteries. ACS Appl. Energy Mater. 6, 4989-4999 (2023).
80.
Q.Zhang, Y.Yang, D.Wang, R.Zhang, H.Fan et al., A silicon/carbon/reduced-graphene composite of honeycomb structure for high-performance lithium-ion batteries. J. Alloys Compd. 944, 169185 (2023).
81.
Z.-W.Li, M.-S.Han, J.Yu, Sub-nanometer structured silicon-carbon composite nanolayers armoring on graphite for fast-charging and high-energy-density lithium-ion batteries. Rare Met.42, 3692-3704 (2023).
82.
H.Shi, W.Zhang, D.Wang, J.Wang, C.Wang et al., Facile preparation of silicon/carbon composite with porous architecture for advanced lithium-ion battery anode. J. Electroanal. Chem. 937, 117427 (2023).
83.
W.Zhang, H.Shi, C.Wang, J.Wang, Z.Wang et al., Synthesizing copper-doped silicon/carbon composite anode as cost-effective active materials for Li-ion batteries. J. Phys. Chem. Solids179, 111387 (2023).
84.
J.Li, J.-Y.Yang, J.-T.Wang, S.-G.Lu, A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met.38, 199-205 (2019).
85.
S.Jiang, B.Hu, R.Sahore, L.Zhang, H.Liu et al., Surface-functionalized silicon nanoparticles as anode material for lithium-ion battery. ACS Appl. Mater. Interfaces10, 44924-44931 (2018).
86.
T.H.Hwang, Y.M.Lee, B.S.Kong, J.S.Seo, J.W.Choi, Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802-807 (2012).
87.
M.Ge, J.Rong, X.Fang, A.Zhang, Y.Lu et al., Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res.6, 174-181 (2013).
88.
Y.Xu, Y.Zhu, C.Wang, Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. J. Mater. Chem. A2, 9751-9757 (2014).
89.
R.Epur, M.Ramanathan, M.K.Datta, D.H.Hong, P.H.Jampani et al., Scribable multi-walled carbon nanotube-silicon nanocomposites: a viable lithium-ion battery system. Nanoscale7, 3504-3510 (2015).
90.
H.Liu, Y.Chen, Y.Zhao, K.Liu, X.Guo et al., Two-dimensional Cu2MoS4-loaded silicon nanospheres as an anode for high-performance lithium-ion batteries. ACS Appl. Energy Mater. 4, 13061-13069 (2021).
91.
H.-J.Shin, J.-Y.Hwang, H.J.Kwon, W.-J.Kwak, S.-O.Kim et al., Sustainable encapsulation strategy of silicon nanoparticles in microcarbon sphere for high-performance lithium-ion battery anode. ACS Sustain. Chem. Eng.8, 14150-14158 (2020).
92.
X.Zhou, Y.-X.Yin, L.-J.Wan, Y.-G.Guo, Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv. Energy Mater. 2, 1086-1090 (2012).
93.
S.Chen, P.Bao, X.Huang, B.Sun, G.Wang, Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res.7, 85-94 (2014).
94.
K.Zhao, M.Pharr, J.J.Vlassak, Z.Suo, Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108, 073517 (2010).
95.
S.Fang, L.Shen, G.Xu, P.Nie, J.Wang et al., Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces6, 6497-6503 (2014).
96.
A.R.Park, D.Y.Son, J.S.Kim, J.Y.Lee, N.G.Park et al., Si/Ti2O3/reduced graphene oxide nanocomposite anodes for lithium-ion batteries with highly enhanced cyclic stability. ACS Appl. Mater. Interfaces7, 18483-18490 (2015).
97.
J.Zhao, W.Wei, N.Xu, X.Wang, L.Chang et al., Dealloying synthesis of silicon nanotubes for high-performance lithium ion batteries. ChemPhysChem23, e202100832 (2022).
98.
X.Wang, G.Li, M.H.Seo, G.Lui, F.M.Hassan et al., Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces9, 9551-9558 (2017).
99.
T.Song, J.Xia, J.H.Lee, D.H.Lee, M.S.Kwon et al., Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 10, 1710-1716 (2010).
100.
H.Wu, G.Chan, J.W.Choi, I.Ryu, Y.Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310-315 (2012).
101.
J.Graetz, C.C.Ahn, R.Yazami, B.Fultz, Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194 (2003).
102.
L.B.Chen, J.Y.Xie, H.C.Yu, T.H.Wang, An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries. J. Appl. Electrochem. 39, 1157-1162 (2009).
103.
G.Schmuelling, M.Winter, T.Placke, Investigating the Mg-Si binary system via combinatorial sputter deposition As high energy density anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces7, 20124-20133 (2015).
104.
G.Zhao, Y.Meng, N.Zhang, K.Sun, Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes. Mater. Lett. 76, 55-58 (2012).
105.
B.M.Bang, J.-I.Lee, H.Kim, J.Cho, S.Park, High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater. 2, 878-883 (2012).
106.
H.Wu, N.Du, X.Shi, D.Yang, Rational design of three-dimensional macroporous silicon as high performance Li-ion battery anodes with long cycle life. J. Power. Sources331, 76-81 (2016).
107.
J.Liu, P.Kopold, P.A. vanAken, J.Maier, Y.Yu, Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew. Chem. Int. Ed.54, 9632-9636 (2015).
108.
Y.Yao, M.T.McDowell, I.Ryu, H.Wu, N.Liu et al., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949-2954 (2011).
109.
Y.Yu, L.Gu, C.Zhu, S.Tsukimoto, P.A. vanAken et al., Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 22, 2247-2250 (2010).
110.
X.Zhang, D.Wang, X.Qiu, Y.Ma, D.Kong et al., Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat. Commun. 11, 3826 (2020).
111.
B.Liang, Y.Liu, Y.Xu, Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power. Sources267, 469-490 (2014).
112.
L.Yue, W.Zhang, J.Yang, L.Zhang, Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries. Electrochim. Acta125, 206-217 (2014).
113.
A.Magasinski, P.Dixon, B.Hertzberg, A.Kvit, J.Ayala et al., High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353-358 (2010).
114.
Y.Chen, N.Du, H.Zhang, D.Yang, Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 622, 966-972 (2015).
115.
L.Zhong, J.Guo, L.Mangolini, A stable silicon anode based on the uniform dispersion of quantum dots in a polymer matrix. J. Power. Sources273, 638-644 (2015).
116.
J.Ji, H.Ji, L.L.Zhang, X.Zhao, X.Bai et al., Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv. Mater. 25, 4673-4677 (2013).
117.
M.Zhou, T.Cai, F.Pu, H.Chen, Z.Wang et al., Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces5, 3449-3455 (2013).
118.
T.D.Bogart, D.Oka, X.Lu, M.Gu, C.Wang et al., Lithium ion battery peformance of silicon nanowires with carbon skin. ACS Nano8, 915-922 (2014).
119.
J.K.Yoo, J.Kim, Y.S.Jung, K.Kang, Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 24, 5452-5456 (2012).
120.
Z.Lu, T.Wong, T.-W.Ng, C.Wang, Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries. RSC Adv. 4, 2440-2446 (2014).
121.
B.Hertzberg, A.Alexeev, G.Yushin, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc.132, 8548-8549 (2010).
M.Ge, Y.Lu, P.Ercius, J.Rong, X.Fang et al., Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 14, 261-268 (2014).
124.
J.Feng, Z.Zhang, L.Ci, W.Zhai, Q.Ai et al., Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries. J. Power. Sources287, 177-183 (2015).
125.
X.Han, H.Chen, J.Liu, H.Liu, P.Wang et al., A peanut shell inspired scalable synthesis of three-dimensional carbon coated porous silicon particles as an anode for lithium-ion batteries. Electrochim. Acta156, 11-19 (2015).
126.
Z.Wang, L.Jing, X.Zheng, Z.Xu, Y.Yuan et al., Microspheres of Si@Carbon-CNTs composites with a stable 3D interpenetrating structure applied in high-performance lithium-ion battery. J. Colloid Interface Sci.629, 511-521 (2023).
127.
J.Ryu, T.Chen, T.Bok, G.Song, J.Ma et al., Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. Nat. Commun. 9, 2924 (2018).
128.
J.Liang, F.Huo, Z.Zhang, W.Yang, M.Javid et al., Controlling the phenolic resin-based amorphous carbon content for enhancing cycling stability of Si nanosheets@C anodes for lithium-ion batteries. Appl. Surf. Sci.476, 1000-1007 (2019).
129.
S.Chen, Z.Chen, X.Xu, C.Cao, M.Xia et al., Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode. Small14, e1703361 (2018).
130.
J.Lee, J.Moon, S.A.Han, J.Kim, V.Malgras et al., Everlasting living and breathing gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery. ACS Nano13, 9607-9619 (2019).
131.
Q.Xu, J.-K.Sun, Y.-X.Yin, Y.-G.Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 28, 1705235 (2018).
132.
J.Cui, Y.Cui, S.Li, H.Sun, Z.Wen et al., Microsized porous SiOx@C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries. ACS Appl. Mater. Interfaces8, 30239-30247 (2016).
133.
Y.Ju, J.A.Tang, K.Zhu, Y.Meng, C.Wang et al., SiOx/C composite from rice husks as an anode material for lithium-ion batteries. Electrochim. Acta191, 411-416 (2016).
134.
B.Jiang, S.Zeng, H.Wang, D.Liu, J.Qian et al., Dual core-shell structured Si@SiOx@C nanocomposite synthesized via a one-step pyrolysis method as a highly stable anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces8, 31611-31616 (2016).
135.
S.J.Lee, H.J.Kim, T.H.Hwang, S.Choi, S.H.Park et al., Delicate structural control of Si-SiOx-C composite via high-speed spray pyrolysis for Li-ion battery anodes. Nano Lett. 17, 1870-1876 (2017).
136.
P.Lv, H.Zhao, C.Gao, T.Zhang, X.Liu, Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochim. Acta152, 345-351 (2015).
137.
M.K.Majeed, G.Ma, Y.Cao, H.Mao, X.Ma et al., Metal-organic frameworks-derived mesoporous Si/SiOx @NC nanospheres as a long-lifespan anode material for lithium-ion batteries. Chemistry25, 11991-11997 (2019).
138.
Y.Bai, D.Yan, C.Yu, L.Cao, C.Wang et al., Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. J. Power. Sources308, 75-82 (2016).
139.
Z.-W.Zhou, Y.-T.Liu, X.-M.Xie, X.-Y.Ye, Constructing novel Si@SnO2 core-shell heterostructures by facile self-assembly of SnO2 nanowires on silicon hollow nanospheres for large, reversible lithium storage. ACS Appl. Mater. Interfaces8, 7092-7100 (2016).
140.
J.Yang, Y.Wang, W.Li, L.Wang, Y.Fan et al., Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater. 29, 1700523 (2017).
141.
T.Ma, X.Yu, H.Li, W.Zhang, X.Cheng et al., High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries. Nano Lett. 17, 3959-3964 (2017).
142.
G.Wang, Z.Wen, L.Du, S.Li, S.Ji et al., A core-shell Si@Nb2O5 composite as an anode material for lithium-ion batteries. RSC Adv. 6, 39728-39733 (2016).
143.
V.A.Sethuraman, K.Kowolik, V.Srinivasan, Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries. J. Power. Sources196, 393-398 (2011).
144.
D.Kim, M.Park, S.M.Kim, H.C.Shim, S.Hyun et al., Conversion reaction of nanoporous ZnO for stable electrochemical cycling of binderless Si microparticle composite anode. ACS Nano12, 10903-10913 (2018).
145.
G.Carbonari, F.Maroni, A.Birrozzi, R.Tossici, F.Croce et al., Synthesis and characterization of Si nanoparticles wrapped by V2O5 nanosheets as a composite anode material for lithium-ion batteries. Electrochim. Acta281, 676-683 (2018).
146.
J.Li, N.J.Dudney, J.Nanda, C.Liang, Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces6, 10083-10088 (2014).
147.
X.Xu, Q.Ai, L.Pan, X.Ma, W.Zhai et al., Li7P3S11 solid electrolyte coating silicon for high-performance lithium-ion batteries. Electrochim. Acta276, 325-332 (2018).
148.
Q.Ai, P.Zhou, W.Zhai, X.Ma, G.Hou et al., Synergistic double-shell coating of graphene and Li4SiO4 on silicon for high performance lithium-ion battery application. Diam. Relat. Mater. 88, 60-66 (2018).
149.
Q.Li, M.Yu, Y.Huang, Z.Cai, S.Wang et al., Phosphorus-doped silicon copper alloy composites as high-performance anode materials for lithium-ion batteries. J. Electroanal. Chem. 944, 117684 (2023).
150.
Z.Sun, M.Li, Z.Zheng, Z.Chen, H.Zhang et al., Cycle-stable Si-based composite anode for lithium-ion batteries enabled by the synergetic combination of mixed lithium phosphates and void-preserving F-doped carbon. Mater. Today Nano22, 100322 (2023).
151.
R.F.H.Hernandha, B.Umesh, P.C.Rath, L.T.T.Trang, J.-C.Wei et al., N-containing carbon-coated β-Si3N4 enhances Si anodes for high-performance Li-ion batteries. Adv. Sci.10, 2301218 (2023).
152.
M.Ge, C.Cao, G.M.Biesold, C.D.Sewell, S.-M.Hao et al., Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv. Mater. 33, e2004577 (2021).
153.
C.Yan, X.-B.Cheng, Y.-X.Yao, X.Shen, B.-Q.Li et al., An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, e1804461 (2018).
154.
H.Wang, Y.Tang, Artificial solid electrolyte interphase acting as “armor” to protect the anode materials for high-performance lithium-ion battery. Chem. Res. Chin. Univ. 36, 402-409 (2020).
155.
Y.-F.Tian, S.-J.Tan, C.Yang, Y.-M.Zhao, D.-X.Xu et al., Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode. Nat. Commun. 14, 7247 (2023).
156.
N.Harpak, G.Davidi, F.Patolsky, Breathing parylene-based nanothin artificial SEI for highly-stable long life three-dimensional silicon lithium-ion batteries. Chem. Eng. J.429, 132077 (2022).
157.
H.Wang, M.Miao, H.Li, Y.Cao, H.Yang et al., In Situ-formed artificial solid electrolyte interphase for boosting the cycle stability of Si-based anodes for Li-ion batteries. ACS Appl. Mater. Interfaces13, 22505-22513 (2021).
158.
C.Yao, X.Li, Y.Deng, Y.Li, P.Yang et al., An efficient prelithiation of graphene oxide nanoribbons wrapping silicon nanoparticles for stable Li+ storage. Carbon168, 392-403 (2020).
159.
K.H.Kim, J.Shon, H.Jeong, H.Park, S.-J.Lim et al., Improving the cyclability of silicon anodes for lithium-ion batteries using a simple pre-lithiation method. J. Power. Sources459, 228066 (2020).
160.
K.Yao, J.P.Zheng, Z.Liang, Binder-free freestanding flexible Si nanoparticle-multi-walled carbon nanotube composite paper anodes for high energy Li-ion batteries. J. Mater. Res.33, 482-494 (2018).
161.
Q.Pan, P.Zuo, T.Mu, C.Du, X.Cheng et al., Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. J. Power. Sources347, 170-177 (2017).
162.
Y.Zhu, W.Hu, J.Zhou, W.Cai, Y.Lu et al., Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage. ACS Appl. Mater. Interfaces11, 18305-18312 (2019).
Y.Zhang, B.Wu, G.Mu, C.Ma, D.Mu et al., Recent progress and perspectives on silicon anode: synthesis and prelithiation for LIBs energy storage. J. Energy Chem. 64, 615-650 (2022).
165.
Y.Wang, H.Xu, X.Chen, H.Jin, J.Wang, Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries. Energy Storage Mater. 38, 121-129 (2021).
166.
M.Gu, X.-C.Xiao, G.Liu, S.Thevuthasan, D.R.Baer et al., Mesoscale origin of the enhanced cycling-stability of the Si-conductive polymer anode for Li-ion batteries. Sci. Rep.4, 3684 (2014).
167.
L.Zhang, L.Zhang, L.Chai, P.Xue, W.Hao et al., A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J. Mater. Chem. A2, 19036-19045 (2014).
168.
J.Yoon, D.X.Oh, C.Jo, J.Lee, D.S.Hwang, Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Phys. Chem. Chem. Phys. 16, 25628-25635 (2014).
169.
D.Shao, H.Zhong, L.Zhang, Water-soluble conductive composite binder containing PEDOT: PSS as conduction promoting agent for Si anode of lithium-ion batteries. ChemElectroChem1, 1679-1687 (2014).
I.Kovalenko, B.Zdyrko, A.Magasinski, B.Hertzberg, Z.Milicev et al., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science334, 75-79 (2011).
172.
Z.-Y.Wu, L.Deng, J.-T.Li, Q.-S.Huang, Y.-Q.Lu et al., Multiple hydrogel alginate binders for Si anodes of lithium-ion battery. Electrochim. Acta245, 371-378 (2017).
173.
C.Wang, H.Wu, Z.Chen, M.T.McDowell, Y.Cui et al., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042-1048 (2013).
174.
R.Guo, S.Zhang, H.Ying, W.Yang, J.Wang et al., New, effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces11, 14051-14058 (2019).