Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (5): 561-568.doi: 10.16183/j.cnki.jsjtu.2023.375
• New Type Power System and the Integrated Energy • Next Articles
Received:
2023-08-07
Revised:
2023-11-29
Accepted:
2023-12-04
Online:
2025-05-28
Published:
2025-06-05
CLC Number:
PAN Meiqi, HE Xing. A Fault Diagnosis Method for Wind Turbines Based on Zero-Shot Learning[J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 561-568.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.375
[1] | 王彩霞, 时智勇, 梁志峰, 等. 新能源为主体电力系统的需求侧资源利用关键技术及展望[J]. 电力系统自动化, 2021, 45(16): 37-48. |
WANG Caixia, SHI Zhiyong, LIANG Zhifeng, et al. Key technologies and prospects of demand-side resource utilization for power systems dominated by renewable energy[J]. Automation of Electric Power Systems, 2021, 45(16): 37-48. | |
[2] | 龙霞飞, 杨苹, 郭红霞, 等. 大型风力发电机组故障诊断方法综述[J]. 电网技术, 2017, 41(11): 3480-3491. |
LONG Xiafei, YANG Ping, GUO Hongxia, et al. Review of fault diagnosis methods for large wind turbines[J]. Power System Technology, 2017, 41(11): 3480-3491. | |
[3] | 曾军, 陈艳峰, 杨苹, 等. 大型风力发电机组故障诊断综述[J]. 电网技术, 2018, 42(3): 849-860. |
ZENG Jun, CHEN Yanfeng, YANG Ping, et al. Review of fault diagnosis methods of large-scale wind turbines[J]. Power System Technology, 2018, 42(3): 849-860. | |
[4] | 杨晓峰, 方逸航, 赵鹏臻, 等. 基于K-means和BPNN的风机状态识别[J]. 中国电力, 2023, 56(6): 158-166. |
YANG Xiaofeng, FANG Yihang, ZHAO Pengzhen, et al. State recognition of wind turbines based on K-means and BPNN[J]. Electric Power, 2023, 56(6): 158-166. | |
[5] |
王宏伟, 孙文磊, 张小栋, 等. 基于优化VMD复合多尺度散布熵及LSTM的风力发电机齿轮箱故障诊断方法研究[J]. 太阳能学报, 2022, 43(4): 288-295.
doi: 10.19912/j.0254-0096.tynxb.2020-0457 |
WANG Hongwei, SUN Wenlei, ZHANG Xiaodong, et al. Fault diagnosis method of wind turbine’s gearbox based on composite multiscale dispersion entropy of optimised VMD and LSTM[J]. Acta Energiae Solaris Sinica, 2022, 43(4): 288-295.
doi: 10.19912/j.0254-0096.tynxb.2020-0457 |
|
[6] | 魏书荣, 张鑫, 符杨, 等. 基于GRA-LSTM-Stacking模型的海上双馈风力发电机早期故障预警与诊断[J]. 中国电机工程学报, 2021, 41(7): 2373-2383. |
WEI Shurong, ZHANG Xin, FU Yang, et al. Early fault warning and diagnosis of offshore wind DFIG based on GRA-LSTM-Stacking model[J]. Proceedings of the CSEE, 2021, 41(7): 2373-2383. | |
[7] | 王爽心, 郭婷婷, 李蒙. 风电机组变工况变桨系统异常状态在线识别[J]. 中国电机工程学报, 2019, 39(17): 5144-5152. |
WANG Shuangxin, GUO Tingting, LI Meng. On-line abnormal state identification of pitch system based on transitional mode for wind turbine[J]. Proceedings of the CSEE, 2019, 39(17): 5144-5152. | |
[8] | 黄南天, 杨学航, 蔡国伟, 等. 采用非平衡小样本数据的风机主轴承故障深度对抗诊断[J]. 中国电机工程学报, 2020, 40(2): 563-574. |
HUANG Nantian, YANG Xuehang, CAI Guowei, et al. A deep adversarial diagnosis method for wind turbine main bearing fault with imbalanced small sample scenarios[J]. Proceedings of the CSEE, 2020, 40(2): 563-574. | |
[9] |
安文杰, 陈长征, 田淼, 等. 基于迁移学习的风电机组轴承故障诊断研究[J]. 太阳能学报, 2023, 44(6): 367-373.
doi: 10.19912/j.0254-0096.tynxb.2022-0085 |
AN Wenjie, CHEN Changzheng, TIAN Miao, et al. Research on bearing fault diagnosis of wind turbines based on transfer learning[J]. Acta Energiae Solaris Sinica, 2023, 44(6): 367-373.
doi: 10.19912/j.0254-0096.tynxb.2022-0085 |
|
[10] |
潘崇煜, 黄健, 郝建国, 等. 融合零样本学习和小样本学习的弱监督学习方法综述[J]. 系统工程与电子技术, 2020, 42(10): 2246-2256.
doi: 10.3969/j.issn.1001-506X.2020.10.13 |
PAN Chongyu, HUANG Jian, HAO Jianguo, et al. Survey of weakly supervised learning integrating zero-shot and few shot learning[J]. Systems Engineering and Electronics, 2020, 42(10): 2246-2256.
doi: 10.3969/j.issn.1001-506X.2020.10.13 |
|
[11] | 冯良骏. 面向零/少样本场景的弱监督学习方法、应用与实现[D]. 杭州: 浙江大学, 2023. |
FENG Liangjun. Methods, applications, and implementation of weakly supervised learning on zero/few-shot scenarios[D]. Hangzhou: Zhejiang University, 2023. | |
[12] | 胡姚刚, 刘怀盛, 时萍萍, 等. 风电机组偏航系统故障诊断与寿命预测综述[J]. 中国电机工程学报, 2022, 42(13): 4871-4884. |
HU Yaogang, LIU Huaisheng, SHI Pingping, et al. Overview of fault diagnosis and life prediction for wind turbine yaw system[J]. Proceedings of the CSEE, 2022, 42(13): 4871-4884. | |
[13] | 金晓航, 孙毅, 单继宏, 等. 风力发电机组故障诊断与预测技术研究综述[J]. 仪器仪表学报, 2017, 38(5): 1041-1053. |
JIN Xiaohang, SUN Yi, SHAN Jihong, et al. Fault diagnosis and prognosis for wind turbines: An overview[J]. Chinese Journal of Scientific Instrument, 2017, 38(5): 1041-1053. | |
[14] | 潘振东, 刘城, 张勤刚, 等. 海上风力发电机组变桨系统故障分析[J]. 船舶工程, 2022, 44(Sup.2): 107-111. |
PAN Zhendong, LIU Cheng, ZHANG Qingang, et al. Failure analysis of pitch system of offshore wind turbine[J]. Ship Engineering, 2022, 44(Sup.2): 107-111. | |
[15] | RITCHIE A, BALZANO L, KESSLER D, et al. Supervised PCA: A multiobjective approach[DB/OL].(2020-11-10) [2023-08-07]. https://arxiv.org/pdf/2011.05309 . |
[16] | 徐舒玮, 邱才明, 张东霞, 等. 基于深度学习的输电线路故障类型辨识[J]. 中国电机工程学报, 2019, 39(1): 65-74. |
XU Shuwei, QIU Caiming, ZHANG Dongxia, et al. A deep learning approach for fault type identification of transmission line[J]. Proceedings of the CSEE, 2019, 39(1): 65-74. | |
[17] | 成珂, 孙琦琦, 马晓瑶. 基于主成分回归分析的气象因子对光伏发电量的影响[J]. 太阳能学报, 2021, 42(2): 403-409. |
CHENG Ke, SUN Qiqi, MA Xiaoyao. Influence of meteorological factors on photovoltaic power generation based on principal component regression analysis[J]. Acta Energiae Solaris Sinica, 2021, 42(2): 403-409. | |
[18] | 张大海, 张晓炜, 孙浩, 等. 基于卷积神经网络的交直流输电系统故障诊断[J]. 电力系统自动化, 2022, 46(5): 132-145. |
ZHANG Dahai, ZHANG Xiaowei, SUN Hao, et al. Fault diagnosis for AC/DC transmission system based on convolutional neural network[J]. Automation of Electric Power Systems, 2022, 46(5): 132-145. | |
[19] |
梁舒曼, 谷艳玲, 罗园庆, 等. 基于增强型卷积神经网络的风力发电机行星齿轮箱故障诊断方法[J]. 太阳能学报, 2023, 44(2): 146-152.
doi: 10.19912/j.0254-0096.tynxb.2021-1109 |
LIANG Shuman, GU Yanling, LUO Yuanqing, et al. Fault diagnosis method of wind turbine planetary gearbox based on enhanced convolutional neural network[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 146-152.
doi: 10.19912/j.0254-0096.tynxb.2021-1109 |
|
[20] | 陈厚合, 张赫, 王长江, 等. 基于卷积神经网络的直流送端系统暂态过电压估算方法[J]. 电网技术, 2020, 44(8): 2987-2999. |
CHEN Houhe, ZHANG He, WANG Changjiang, et al. A method estimating transient overvoltage of HVDC sending-end system based on convolutional neural network[J]. Power System Technology, 2020, 44(8): 2987-2999. | |
[21] | 郑炜, 林瑞全, 王俊, 等. 基于GAF与卷积神经网络的电能质量扰动分类[J]. 电力系统保护与控制, 2021, 49(11): 97-104. |
ZHENG Wei, LIN Ruiquan, WANG Jun, et al. Power quality disturbance classification based on GAF and a convolutional neural network[J]. Power System Protection and Control, 2021, 49(11): 97-104. | |
[22] | 王守相, 郭陆阳, 赵倩宇, 等. 基于参考序列与全卷积网络的风速数据缺失与异常修复方法[J]. 电力系统自动化, 2023, 47(9): 129-136. |
WANG Shouxiang, GUO Luyang, ZHAO Qianyu, et al. Repair method for missed and abnormal wind speed data based on reference sequence and full convolution network[J]. Automation of Electric Power Systems, 2023, 47(9): 129-136. | |
[23] |
陆文安, 朱清晓, 李兆伟, 等. 基于卷积神经网络的新型电力系统频率特性预测方法[J]. 上海交通大学学报, 2024, 58(10): 1500-1512.
doi: 10.16183/j.cnki.jsjtu.2023.071 |
LU Wen’an, ZHU Qingxiao, LI Zhaowei, et al. A prediction method of new power system frequency characteristics based on convolutional neural network[J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1500-1512. | |
[24] | ROMERA-PAREDES B, TORR P H S. An embarrassingly simple approach to zero-shot learning[C]// Proceedings of the 32nd International Conference on Machine Learning. Lille, France: ACM, 2015: 2152-2161. |
[25] | KODIROV E, XIANG T, GONG S G. Semantic autoencoder for zero-shot learning[C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 4447-4456. |
[1] | QIN Hao, SU Liwei, WU Guangbin, JIANG Chongying, XU Zhipeng, KANG Feng, TAN Huochao, ZHANG Yongjun. Short-Term Telephone-Traffic Prediction of Power Grid Customer Service Based on Adaboost-CNN [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 266-273. |
[2] | JIANG Yilin1, 2∗ (蒋伊琳), LI Xiang1, 2 (李向), ZHANG Haoping3 (张昊平). Emitter Beam State Sensing Based on Convolutional Neural Network and Received Signal Strength [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1017-1022. |
[3] | LU Wen’an, ZHU Qingxiao, LI Zhaowei, LIU Hui, YU Yiping. A Prediction Method of New Power System Frequency Characteristics Based on Convolutional Neural Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1500-1512. |
[4] | ZHAN Ke, ZHU Renchuan. A CNN-LSTM Ship Motion Extreme Value Prediction Model [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 963-971. |
[5] | LI Qing, HUANGFU Yubin, LI Jiangyun, YANG Zhifang, CHEN Peng, WANG Zihan. UConvTrans:A Dual-Flow Cardiac Image Segmentation Network by Global and Local Information Integration [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 570-581. |
[6] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[7] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[8] | TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69. |
[9] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[10] | XUE Rongrong, WANG Zhiwu, YAN Guozheng, ZHUANG Haoyu. Noise Reduction Method for Intestinal Image Acquired by Intestinal Robot [J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1303-1309. |
[11] | ZHAO Yong (赵勇), MENG Yang (孟杨), YU Pengyao (于鹏垚), WANG Tianlin (王天霖), SU Shaojuan (苏绍娟). Prediction of Fluid Force Exerted on Bluff Body by Neural Network Method [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 186-192. |
[12] | FU Ling (傅玲), MA Jingchen (马璟琛), CHEN Yizhi (琛奕志), LARSSON Rasmus, ZHAO Jun *(赵俊). Automatic Detection of Lung Nodules Using 3D Deep Convolutional Neural Networks [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 517-523. |
[13] | CHEN Yimin (陈一民), LU Rongrong (陆蓉蓉), ZOU Yibo (邹一波), ZHANG Yanhui (张燕辉). Branch-Activated Multi-Domain Convolutional Neural Network for Visual Tracking [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(3): 360-. |
[14] | LI Yangyang,SHI Licheng,WAN Weibing,ZHAO Qunfei. A Convolutional Neural Network-Based Method for 3D Object Detection [J]. Journal of Shanghai Jiaotong University, 2018, 52(1): 7-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||