Please wait a minute...
上海交通大学学报(自然版)
0
  交通运输 本期目录 | 过刊浏览 | 高级检索 |
波浪在半球上绕射的解析解
周华伟1,张洪生1,2
(1.上海交通大学 船舶海洋与建筑工程学院, 海洋工程国家重点实验室, 上海 200240;2.上海海事大学 海洋环境与工程学院, 上海 201306)
 
 
 
Analytical Solution to Wave Diffraction by a Hemisphere
ZHOU Huawei1,ZHANG Hongsheng1,2
(1.State Key Laboratory of Ocean Engineering, College of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China; 2.Ocean Environmental and Engineering College, Shanghai Maritime University, Shanghai 201306, China)
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 
基于线性势流理论,推导了无限水深中波浪在半球上绕射问题的解析解.给出了球坐标系下无限水深入射波速度势的表达式;利用多极子展开法,以包含未知系数和连带勒让德函数的无限序列的形式给出了流场中绕射速度势的表达式;通过物面边界条件建立了方程组,进而求解了未知系数.计算了作用在半球上总的波浪激励力,并通过与利用Haskind关系得到的结果以及他人的数值结果进行比较,验证了文中结果的正确性.

 
 
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract
 Based on the linear potential theory, an analytical solution is presented to study the diffraction problem of a hemisphere on the surface of water with infinite depth. The incident wave potential in the spherical coordinate system was proposed and the method of multipole expansion was employed to obtain the diffraction wave potential in the form of infinite series of the associated Legendre functions with the unknown coefficients which could be determined by solving a set of linear equations from the body boundary condition. The wave exciting force acting on the hemisphere was calculated and the results were compared with those from the Haskind relationship and some numerical results from the published literature.
 
收稿日期: 2012-10-16      出版日期: 2013-10-30
ZTFLH:  U 661.22  
基金资助:

国家自然科学基金资助项目(51079082,40676053),劳氏教育基金会UCL-SJTU-HEU深水工程及水动力学联合研究中心资助项目

引用本文:   
周华伟1,张洪生1,2 . 波浪在半球上绕射的解析解[J]. 上海交通大学学报(自然版), .
ZHOU Huawei1,ZHANG Hongsheng1,2. Analytical Solution to Wave Diffraction by a Hemisphere. J. Shanghai Jiaotong Univ.(Sci.) , 2013, 47(10): 1597-1600.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtunc/CN/      或      http://www.qk.sjtu.edu.cn/jsjtunc/CN/Y2013/V47/I10/1597
[1]Breit S R. A higherorder panel method for surface wave radiation and diffraction by a spheroid [C]∥In Proceedings of the Fourth International Conference on Numerical Ship Hydrodynamics. Washington, DC: National Academy of Sciences, 1985: 200215.

[2]Datta R, Sen D. A Bsplinebased method for radiation and diffraction problems [J].

Ocean Engineering, 2006, 33(1718): 22402259.

[3]徐刚,段文洋. 常数分布Rankine源法与二阶绕射问题精度研究 [J]. 哈尔滨工程大学学报, 2010, 31(9): 11441152.

XU Gang, DUAN Wenyang. Numerical investigatation of secondorder wave diffraction based on the Rankine source method [J]. Journal of Harbin Engineering University, 2010, 31(9): 11441152. 

[4]Dong M S, Miao G P, Zhu R C, et al. Analytic solution for wave diffraction of a submerged hollow sphere with an opening hole [J]. Journal of Hydrodynamics, 2010, 22(3): 295304.

[5]Dong M S, Miao G P, Zhu R C, et al. Semianalytical solution for wave radiation of a hollow sphere with an opening hole in finite depth [J]. Journal of Marine Science and Technology, 2012, 20(1): 8288.

[6]Liu Y L, Teng B, Cong P W, et al. Analytical study of wave diffraction and radiation by a submerged sphere in finite water depth [J]. Ocean Engineering, 2012, 51(1): 129141.

[7]Thorne R. Multipole expansions in the theory of surface waves [J]. Proceeding of Cambrige Philosophical Society, 1953,49: 701716.

[8]Havelock T. Waves due to a floating sphere making periodic heaving oscillations [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1955, 231: 17.

[9]Hulme A. The wave forces acting on a floating hemisphere undergoing forced periodic oscillations [J]. Journal of Fluid Mechanics, 1982, 121(1): 443463.

[10]Mei C C. The applied dynamics of ocean surface waves [M].  Singapore: World Scientific Pub Co Inc, 1989.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed