Please wait a minute...
上海交通大学学报(自然版)
0
  交通运输 本期目录 | 过刊浏览 | 高级检索 |
通勤出行时间与方式选择
鲜于建川1,2a,隽志才1,朱泰英2b
(1.上海交通大学 安泰经济与管理学院,上海 200052; 2.上海电机学院 a.商学院;b.数理教学部,上海 201306)
 
Selection of Commute Trip Timing and Mode
XIANYU Jianchuan1,2a,JUAN Zhicai1,ZHU Taiying2b
 (1. Antai College of Economics and Management, Shanghai Jiaotong University, Shanghai 200052, China; 2a. Business School; 2b. Department of Mathematics and Physics, Shanghai DianJi University, 201306, China)
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 
针对不同方式通勤出行者在出行时间上的差异性,从通勤出行方式对通勤出行时间的影响出发,将通勤出行方式选择和出行时间选择纳入同一模型系统,建立由离散选择模型和线性回归模型组成的离散连续模型,对通勤出行方式和出行时间选择及其相互影响模式进行了深入分析.研究表明,通勤出行方式对出行时间选择有显著影响,通勤者年龄、性别及其家庭成员结构、工作活动属性及通勤途中的非工作活动安排等都是出行方式和出行时间选择的重要影响因素.本研究对准确预测通勤出行选择行为及其对交通管理工作的影响有重要意义.
 
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract
The selection of trip timing and mode are two critical decisions of each commuters’ daily travelling behavior. Since there are significant differences in observed home-work departure time distributions by different mode of commute, this paper provides an integrated treatment of commute mode and time of day explicitly considering the influence of mode selection on departure time selection. In this paper the joint model of mode selection and homework trip timing is estimated using a discrete-continuous econometric model, which allows for unrestricted correlation between the unobserved factors influencing the two decisions. Strong correlations between unobserved factors influencing mode selection and trip timing are found. Furthermore the estimated model proves that age, gender, household member structure, activity and travel characteristics of the commuter are all important influencing factors for the two decisions. These findings have important implications for commuter travel behavior analysis and transportation managemnet.
 
收稿日期: 2012-08-03      出版日期: 2013-10-30
ZTFLH:     
  U 491  
基金资助:

国家自然科学基金资助项目(51008190), 中国博士后科学基金(2012M520904; 2013T60452), 上海电机学院项目(10C201), 上海电机学院重点学科建设项目(10XKJ01)

引用本文:   
鲜于建川1,2a,隽志才1,朱泰英2b. 通勤出行时间与方式选择[J]. 上海交通大学学报(自然版), .
XIANYU Jianchuan1,2a,JUAN Zhicai1,ZHU Taiying2b. Selection of Commute Trip Timing and Mode. J. Shanghai Jiaotong Univ.(Sci.) , 2013, 47(10): 1601-1605.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtunc/CN/      或      http://www.qk.sjtu.edu.cn/jsjtunc/CN/Y2013/V47/I10/1601
[1]Zaman H, Habib K M N. Commuting mode choice in the context of travel demand management (TDM) policies: An empirical investigation in Edmonton, Alberta [J]. Canadian Journal of Civil Engineering, 2011, 38(4): 433443.

[2]Pinjari A R, Bhat C R. A multiple discretecontinuous nested extreme value (MDCNEV) model: Formulation and application to nonworker activity timeuse and timing behavior on weekdays [J]. Transportation Research Part B, 2010, 44(4): 562583.

[3]Susilo Y O, Kitamura R. Structural changes in comuters’ daily travel: The case of auto and transit commuters in the Osaka metropolitan area of Japan, 19802000 [J]. Transportation Research Part A, 2007, 42(1): 95115.

[4]Small K A. The scheduling of consumer activities: Work trips [J]. American Economic Review, 1982, 72(3): 467479.

[5]Ettema D, Bastin F, Polak J, et al. Modeling the joint choice of activity timing and duration [J]. Transportation

Research Part A, 2007, 41(9): 827841.

[6]Castro M, Eluru N, Bhat C R. Joint model of participation in nonwork activities and timeofday choice set formation for workers [J]. Transportation Research Record, 2011, 2254: 140150.

[7]Lemp J D, Kockelman K M, Damien P. Bivariate multinomial Probit model for trip scheduling: Bayesian analysis of work tour [J]. Transportation Science, 2012, 46(3): 405424.

[8]Ferdous N, Pendyala R M, Bhat C R, et al. Modeling the influence of family, social context, and spatial proximity on use of nonmotorized transport mode [J]. Transportation Research Record, 2011, 2230: 111120.

[9]Pinjari A R, Pendyala R M, Bhat C R, et al. Modeling residential sorting effects to understand the impact of the built environment on commute mode choice [J]. Transportation, 2007, 34(5): 557573.

[10]Portoghese A E, Spissu A E, Bhat C R, et al. A copulabased joint model of commute mode choice and number of nonwork stops during the commute [J]. International Journal of Transport Economics, 2011, 38(3): 337362.

[11]Lee L F. Generalized econometric models with selectivity [J]. Econometrica, 1983, 51(2): 507512.

[12]Feller W. An introduction to probability theory and its applications [M]. New York: Wiley, 1971.

[13]Aptech Systems, Inc. GAUSS user guide [M]. 10th ed. Washington: Aptech Systems, Inc, 2010.
[1] 闫慧, 赵亦希, 于忠奇, 杜引. 2060-T8铝锂合金槽形件的电辅助增量成形[J]. 上海交通大学学报, 2017, 51(5): 513-519.
[2] 顾新建,于忠奇,宋洋. 工艺参数对高强度钢冷冲压界面温度影响分析[J]. 上海交通大学学报(自然版), 2017, 51(4): 426-.
[3] 郑先坤,王武荣,韦习成. 热镀锌先进高强度钢板摩擦耦合塑性变形行为[J]. 上海交通大学学报(自然版), 2017, 51(4): 432-.
[4] 朱梦瑞,吴兆勇,武剑,杜正春,杨建国. 基于误差椭圆理论与蒙特卡罗方法的圆直径测量不确定度评定[J]. 上海交通大学学报(自然版), 2017, 51(4): 393-.
[5] 弓鹏伟1,费燕琼1,3,宋立博2. 基于多传感器信息融合的轮履混合移动机器人路况识别方法[J]. 上海交通大学学报(自然版), 2017, 51(4): 398-.
[6] 霍发力1,张健1,杨德庆2. 工作水深对浮式平台波浪砰击影响的敏感性分析[J]. 上海交通大学学报(自然版), 2017, 51(4): 410-.
[7] 吴灵杰,寇新建,周拥军,蒋萌. 既有混凝土码头的时变氯离子扩散过程[J]. 上海交通大学学报(自然版), 2017, 51(4): 444-.
[8] 邹旭毛,李良星,孔刘波,王华胜. 颗粒堆积床内两相流动阻力及相间摩擦力[J]. 上海交通大学学报(自然版), 2017, 51(4): 470-.
[9] 刘勇1,陈炉云2. 涡激振动对管道液固两相流流场的影响[J]. 上海交通大学学报(自然版), 2017, 51(4): 485-.
[10] 李曦,张凯晟,杨自力,连之伟. 超声雾化液体除湿系统对室内空气品质的影响[J]. 上海交通大学学报(自然版), 2017, 51(3): 257-.
[11] 陈思,马宁,顾解忡. 基于弱非线性假定的船舶波浪增阻数值计算[J]. 上海交通大学学报(自然版), 2017, 51(3): 277-.
[12] 刘东喜1,唐文勇1,王晋1, 2,薛鸿祥1. 基于非均质多相流模型的液舱晃荡数值模拟[J]. 上海交通大学学报(自然版), 2017, 51(3): 283-.
[13] 王运龙,李楷,沈嘉祺,金超光,陈小雅. 耙吸式挖泥船先进性评价方法[J]. 上海交通大学学报(自然版), 2017, 51(3): 305-.
[14] 马晨增,唐文勇. 独立B型液化天然气运输船绝热层#br# 局部失效对结构安全的影响[J]. 上海交通大学学报(自然版), 2017, 51(3): 300-.
[15] 樊哲良1,王延林1,岳前进1,孙晔2. 基于实测的软刚臂横摆疲劳分析[J]. 上海交通大学学报(自然版), 2017, 51(3): 332-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed