Please wait a minute...
上海交通大学学报(自然版)
0
  金属学与金属工艺 本期目录 | 过刊浏览 | 高级检索 |
窄间隙旋转电弧熔化极活性气体保护焊视觉焊缝偏差检测
黎文航1,2,高凯1,王加友1,何金桥1
(1. 江苏科技大学 材料科学与工程学院,江苏 镇江 212003;2. 江苏现代造船技术有限公司,江苏 镇江 212003)
A Vision Sensing Based Welding Deviation Detection Algorithm for Rotating Arc Narrow Gap MAG Welding
LI Wenhang1,2,GAO Kai1,WANG Jiayou1,HE Jinqiao1
(1. School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China; 2. Jiangsu Modern Shipbuilding Technology Co. Ltd., Zhenjiang 212003, Jiangsu, China)
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

摘要:  针对旋转电弧窄间隙熔化极活性气体保护焊多层单道焊焊缝跟踪需要,提出一种基于被动视觉传感的焊缝偏差识别方法. 首先通过旋转电弧位置传感器和处于触发工作模式的CCD摄像机获取电弧旋转到坡口左侧和坡口右侧时的焊接图像,然后根据图像灰度直方图特点,构建了自适应双阈值获取算法. 大阈值用于获取电弧区域进而得到电弧中心位置;小阈值用于获取坡口工件区域,进而通过计算水平方向一阶差分得到坡口边缘. 通过对比一个电弧旋转周期内获取的两幅图像,可计算电弧旋转中心和坡口中心的偏差,得到焊缝偏差. 该偏差检测算法高效、可靠且可避免坡口底部改变带来的误差,同时可用于不同偏差算法的比较和融合.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Abstract: Aimed at welding seam tracking of multilayer single pass welding by narrow gap rotating arc MAG, a passive vision sensing based welding deviation detection algorithm was proposed. First,the welding image was obtained by the welding position sensor and the CCD camera in trigger mode when the rotating arc was on the left or right side of the groove. Second, two adaptive thresholds were computed according to the grayscale histogram of the welding image. The large threshold was used to obtain the arc region and the arc central location. The small threshold was used to obtain the base metal area of the groove, and the edges of the groove were obtained by calculating the horizontal direction firstorder difference in special horizontal positions. Finally, by comparing the image process result of two images in each rotation arc cycle, the welding deviation, i.e. the difference between the center of arc rotating and the center of the groove, were obtained. The deviation detection algorithm is efficient and reliable. It can avoid the interference of the variation of the groove bottom, and be used for comparison or integration with other deviation detection algorithms.

收稿日期: 2014-07-31      出版日期: 2015-03-30
ZTFLH:  TG 409  
基金资助:

国家自然科学基金项目(51005107,51475218),江苏省自然科学基金项目(BK2011509),江苏省“青蓝工程”科技创新团队、优秀青年骨干教师项目,江苏高校优势学科建设工程项目资助

引用本文:   
黎文航1,2,高凯1,王加友1,何金桥1. 窄间隙旋转电弧熔化极活性气体保护焊视觉焊缝偏差检测[J]. 上海交通大学学报(自然版), .
LI Wenhang1,2,GAO Kai1,WANG Jiayou1,HE Jinqiao1. A Vision Sensing Based Welding Deviation Detection Algorithm for Rotating Arc Narrow Gap MAG Welding. J. Shanghai Jiaotong Univ.(Sci.) , 2015, 49(03): 353-356.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtunc/CN/      或      http://www.qk.sjtu.edu.cn/jsjtunc/CN/Y2015/V49/I03/353

[1]Yang C L, Guo N, Lin S B, et al. Application of rotating arc system to horizontal narrow gap welding [J]. Science and Technology of Welding & Joining, 2009, 14 (2):172177.

[2]叶利利. 窄间隙焊缝跟踪视觉传感方法[D]. 镇江:江苏科技大学, 2012.

[3]王朋, 张富巨, 罗传红. 窄间隙焊自动跟踪系统中小坡口面角坡口棱边的图像检测[J]. 焊接技术,2001,40(1):4749.

WANG Peng, ZHANG Fuju, LUO Chuanhong. Welding groove edge’s image detection in narrow gap welding automation [J]. Welding Technology, 2001, 40(1):4749.

[4]许平非, 郑军, 潘际銮. 一种窄间隙焊接被动光视觉传感器的研究[J]. 电焊机, 2010, 40(3):3739.

XU Pingfei, ZHENG Jun, PAN Jiluan. Research of a passive optical vision sensor used in narrow gap welding [J]. Electric Welding Machine, 2010, 40(3):3739.

[5]陈小奇, 黄石生. 视觉系统在窄间隙焊缝自动跟踪的研究[J]. 华南理工大学学报:自然科学版, 1992, 20(2):5965.

CHEN Xiaoqi, HUANG Shisheng. An investigation into vision system for automatic seam tracking of narrow gap welding process [J]. South China University of Technology: Natural Science, 1992, 20(2):5965.

[6]王克鸿, 汤新臣, 刘永,等. 富氩气保焊熔池信息视觉检测方法试验研究[J]. 机械工程学报,2003,40(6):161164.

WANG Kehong, TANG Xinchen, LIU Yong, et al. Experimental research on the method of vision detecting MAG welding pool information [J]. Chinese Journal of Mechanical Engineering, 2003, 40(6):161164.

[1] 石玗,周海,朱明,王桂龙. 单电源双丝旁路耦合电弧熔化极气体保护焊工艺[J]. 上海交通大学学报(自然版), 2015, 49(03): 293-296.
[2] 杨乘东,钟继勇,陈玉喜,陈善本. 基于视觉识别的多层多道路径规划修正[J]. 上海交通大学学报(自然版), 2015, 49(03): 297-300.
[3] 张刚,石玗,李春凯,樊丁,黄健康. 钨极惰性气体保护焊熔池三维自由表面特征参数的激光视觉测量[J]. 上海交通大学学报(自然版), 2015, 49(03): 301-305.
[4] 庹宇鲲1,胡绳荪1,申俊琦1,陈昌亮2,谷文3,李坚3. 基于支持向量机的J型坡口接头相贯线检测[J]. 上海交通大学学报(自然版), 2015, 49(03): 310-314.
[5] 吴金明1,薛龙1,2,黄继强1,刘剑1,李兰2,徐雷3. 环境压力对熔化极气体保护焊焊接过程及焊缝成形的影响[J]. 上海交通大学学报(自然版), 2015, 49(03): 315-318.
[6] 贺京杰1,汪苏2a,苗新刚2b. 焊接视觉跟踪机器人数学建模和工作空间分析[J]. 上海交通大学学报(自然版), 2015, 49(03): 318-322.
[7] 乐健,张华,叶艳辉,范宇. 基于旋转电弧传感机器人立焊焊缝的跟踪[J]. 上海交通大学学报(自然版), 2015, 49(03): 348-352.
[8] 黄健康a,何笑英a,张刚b,石玗b,樊丁b. 钨极惰性气体保护焊熔池表面三维恢复算法及其可视化[J]. 上海交通大学学报(自然版), 2015, 49(03): 337-340.
[9] 沈鸿源1,2,陈华斌2,林涛2,陈善本2. 应用于铝合金焊接中的被动视觉获取[J]. 上海交通大学学报(自然版), 2015, 49(03): 341-343.
[10] 朱明,石玗,樊丁,卢立晖,周海. 脉冲旁路耦合电弧惰性气体保护焊过程控制[J]. 上海交通大学学报(自然版), 2015, 49(03): 344-347.
[11] 余焕伟,叶震,张志芬,陈华斌,陈善本. Al-Mg合金钨极气体保护焊接电弧的光谱特征提取方法[J]. 上海交通大学学报(自然版), 2013, 47(11): 1655-1660.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed