|
|
Development of Flatness Control Practical Teaching Platform Based on Simulation Technology |
Xiaodong LUO1( ), Qiang WANG2, Liping ZHANG1, Yueyue JIANG1, Bin HU1 |
1. College of Metallurgical and Materials Engineering, Chongqing University of Science and Technology,Chongqing 401331, China 2. CISDI Electric Technology Co., Ltd., Chongqing 401122, China |
|
|
Abstract Simulation technology can realistically simulate the real world, cultivate students’ innovative practice ability, improve practical teaching effect. In view of the problems existing in the practical teaching of materials processing and controlling engineering, we designed a flatness control practical teaching platform based on simulation technology. The development of practical teaching platform divided into five modules: raw material preparation, rolling process control, flatness control foundation, flatness control strategy and flatness control training. The five modules contain all aspects of flatness control, and introduce from point to surface, from shallow to deep. The rolling temperature and thermal crown simulation were taken as examples, the process of modeling and simulation were introduced in detail. The teaching platform can stimulate students’ interest of learning, improve students’ practical ability, also can make the students handle the complex rolling conditions and the complex flatness control conditions.
|
Received: 23 June 2016
Published: 10 July 2017
|
|
|
|
|
模块 | 对应阶段 | 实践项目 | 原料准备 | 加热工艺控制 | 炉压调节与控制 | 加热时间设计与分配 | 加热温度制定 | 加热速度选取 | 轧制过程控制 | 轧制工艺设计 | 轧制方法及压下量的设计 | 轧制速度及速度制度的设定 | 轧制时间、轧制温度计算与校核 | 轧制压力及轧制力矩计算 | 轧制强度校核 | 轧制板形控制基础 | 辊缝设定及影响分析 | 板形及板形不良 | 热凸度辊缝影响规律研究 | 轧辊的磨损对辊缝的影响规律研究 | 轧辊的弹性压扁对辊缝的影响规律研究 | 轧制板形控制策略 | 板形控制理论分析 | 弯辊力对板形的影响规律研究 | 窜辊量对板形的影响规律研究 | 辊型曲线对板形的影响规律研究 | 板形控制仿真训练 | 板形控制仿真分析 | 轧制温度及热凸度模拟仿真 | 弯辊力优化模拟仿真 | 窜辊量优化模拟仿真 | 辊型曲线设计及模拟仿真 | 同宽轧制模拟仿真 | 板形控制效果分析及调整 |
|
|
参数 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | 工作辊辊身长度/m | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | 支撑辊辊身长度/m | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | 工作辊直径/mm | 765~850 | 765~850 | 765~850 | 765~850 | 630~700 | 630~700 | 630~700 | 支撑辊直径/m | 1.44~1.60 | 1.44~1.60 | 1.44~1.60 | 1.44~1.60 | 1.44~1.60 | 1.44~1.60 | 1.44~1.60 | 支撑辊辊颈直径/mm | 955 | 955 | 955 | 955 | 955 | 955 | 955 | 工作辊弯辊缸间距/m | 3.35 | 3.35 | 3.35 | 3.35 | 3.35 | 3.35 | 3.35 | 压下油缸间距/mm | 3.35 | 3.35 | 3.35 | 3.35 | 3.35 | 3.35 | 3.35 | 各机架牌坊刚度/(t·mm-1) | 680 | 680 | 680 | 680 | 630 | 630 | 630 | 各机架工作辊弯辊力范围/(t·侧-1) | 0~150 | 0~150.1 | 0~150.2 | 0~150.3 | 0~150.4 | 0~150.5 | 0~150.6 | 各机架工作辊窜辊量范围/mm | -150-150 | -151-151 | -152-152 | -153-153 | -154-154 | -155-155 | -156-156 | 各机架中心线与其后架中心线间距/m | 5.925 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 各机架中心线至其后水冷节点间距/m | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | N/A | 水冷节点有效喷洒区域/mm | 800 | 800 | 800 | 800 | 800 | 800 | N/A | 入口测温仪至第一机架中心线间距/m | 2.62 | 入口测温仪至入口除鳞箱中心线间距/m | 7.60 | 除鳞箱有效喷洒区域/m | 2.62 | 末机架中心线至出口测温仪间距/m | 5.50 |
|
|
|
|
|
|
|
|
[1] |
朱光俊,杨治立,杨艳华. 校企联合应用型本科人才培养机制探析[J]. 职业与教育,2012(26):39-40.
|
[2] |
陈静. 地方院校应用型本科人才培养模式探究[J].重庆科技学院学报(社会科学版),2011(3):160-162.
|
[3] |
吴娅梅,胡彬,阳辉.材料成型及控制工程专业实践教学的改革探索[J].科技资讯,2011(8):208.
|
[4] |
李平,毛昌杰,徐进. 开展国家级虚拟仿真实验教学中心建设提高高校实验教学信息化水平[J]. 实验室研究与探索,2013,32(11):5-8.
|
[5] |
袁晓丽,万新,杜长坤,等.仿真技术在冶金工程专业实践教学中的应用[J]. 重庆科技学院学报(社会科学版),2013(3):191-193.
|
[6] |
邵琰,刘敏超. 虚拟仿真教学实验平台在应用型大学的搭建及虚拟仿真技术在化工类课程教学中的探索性研究[J]. 广东化工,2015,42(14):243-244.
|
[7] |
罗晓东,尹立孟,王青峡,等. 基于虚拟仿真技术的实验教学平台设计—以材料成型及控制工程为例[J]. 实验室研究与探索,2016,35(4):5-8.
|
[8] |
陈先霖. 新一代高技术宽带钢轧机的板形控制[J].北京科技大学学报,1997,19(S1):1-5.
|
[9] |
张杰. CVC轧机辊形及板形的研究[D].北京:北京科技大学,1990.
|
[10] |
娄燕雄. 辊凸度连续可调(CVC)轧机的轧辊辊面曲线[J].中南工业大学学报,1995,26(3):357-359.
|
[11] |
郭忠峰. 热连轧带钢板形控制与辊形优化设计[D].沈阳:东北大学,2008.
|
[12] |
A. Seilinger, A. Mayrhofer, A. Kainz.SmartCrown.改善轧机凸度和平直度控制的新系统[J].中国冶金, 2003(1): 42-43.
|
[13] |
张杰,陈先霖,徐耀寰,等.轴向移位变凸度四辊轧机的辊形设计[J].北京科技大学学报,1994,16(Sl):98-100.
|
[14] |
胡松涛. 太钢2 250 mm不锈钢热连轧生产线的工艺及设备[J].轧钢,2006,23(5):33-36.
|
[15] |
郭立君. 邯钢CSP与2 250热轧厂精轧机主要设备比较与分析[J].金属世界,2011(2):57-59.
|
[1] |
ZHANG Qiang, YU Yao, CHI Dejian, ZHU Zhipeng, JIANG Tao. Study on the Damage Effect of Cylindrical Charge on Reinforced Concrete Slabs[J]. Air & Space Defense, 2020, 3(2): 16-23. |
[2] |
LIU Zhizhao, LI Yanhong, HU Xiaofeng, LI Wei. Design of View-based Simulation Evaluation Process of Equipment Effectiveness[J]. Air & Space Defense, 2020, 3(1): 80-86. |
[3] |
WU Bin, WANG Weiyu, ZHONG Yongjian, WANG Lei, ZHU Mengjie. Numerical Simulation and Study of Unsteady Separation of Missile Booster[J]. Air & Space Defense, 2019, 2(4): 7-12. |
[4] |
HUANG Luyu, XU Shengli, ZHANG Minghuan. Canard/Tail Rudder Compound Control Technology Based on Sequential Quadratic Programming [J]. Air & Space Defense, 2019, 2(3): 38-43. |
[5] |
KANG Youwei, WANG Feng, CHEN Dongfang, SHEN Li. Dynamic Modeling and Analysis of Gyro-stabilized Seeker[J]. Air & Space Defense, 2019, 2(3): 59-65. |
[6] |
LUO Chen, GE Yong, WANG Shushen, PAN Jun. Electromagnetic Scattering Characteristics of Bomber Based on the Method of Moments [J]. Air & Space Defense, 2019, 2(3): 66-72. |
[7] |
HUANG Fu-xiang, LI Li-hui, YIN Bing-gang, LIU Guo-feng, Chen Jin-ming. Research on damage and risk of Collision of FPSO Boardside Risers[J]. Ocean Engineering Equipment and Technology, 2019, 6(2): 487-493. |
[8] |
Sun Chang-li, Yuan Ze-ming, Zhang Shuai, He Peng-fei, Miao Dian-yuan, Chen Pei-hua. Design and Application of Simple Blowout Simulator[J]. Ocean Engineering Equipment and Technology, 2019, 6(2): 513-516. |
[9] |
HUANG Fu-xiang, WU Chang-nan, LI Xiang, LI Xin-fei, LI Li-hui, YIN Bing-gang. Research on Inter-propeller Interference of Dynamic Positioning Vessel[J]. Ocean Engineering Equipment and Technology, 2019, 6(2): 536-543. |
[10] |
LIU Yong, YANG Guibing. Research on Warfare Simulation System Credibility Evaluation[J]. Air & Space Defense, 2019, 2(2): 49-52. |
[11] |
YANG Yi-fan, LI Xin, WU Bo, LI Jian-xing, SHENG Nan. Research on Resistance Performance of Drillship with Different Recessing Type Moonpools[J]. Ocean Engineering Equipment and Technology, 2019, 6(1): 470-477. |
[12] |
SHAO Zhijiang, SUN Quan , GUO Jinlei, PAN Jinbo, DU Zhe. Simulation Analysis of Anti-interference of Cables on Missile[J]. Air & Space Defense, 2019, 2(1): 58-63. |
[13] |
LI Ji, LI Zhan-dong, ZHANG Hai-xiang. Experimental Simulation Review of the Decomposition of Natural Gas Hydrate[J]. Ocean Engineering Equipment and Technology, 2018, 5(增刊): 30-33. |
[14] |
WEI Xu-min, ZHANG Chuan-rong, ZHANG En-ming, GUO Hong, WU Wen-long, ZHANG Jing-ke. The Optimal Design of Conveying Frame Based on Ansys Software[J]. Ocean Engineering Equipment and Technology, 2018, 5(增刊): 149-153. |
[15] |
WEI Wei, WANG Xin-liang, TANG Ping-peng, CHEN Hong. Sink-Stability Analysis for the Underwater Walking & Swimming Robot[J]. Ocean Engineering Equipment and Technology, 2018, 5(增刊): 305-308. |
|
|
|
|