|
|
Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization |
Fan He1, Yingnan Liu1, Xiaoxuan Yang1, Yaqi Chen1, Cheng-Chieh Yang5, Chung-Li Dong5, Qinggang He1, Bin Yang1, Zhongjian Li1, Yongbo Kuang3, Lecheng Lei1, Liming Dai6, Yang Hou1,2,4( ) |
1 Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People’s Republic of China 2 Institute of Zhejiang University - Quzhou, Quzhou, 324000, People’s Republic of China 3 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People’s Republic of China 4 School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, People’s Republic of China 5 Department of Physics, Tamkang University, New Taipei, 25137, Taiwan, People’s Republic of China 6 Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2051, Australia |
|
|
Abstract Metal-organic frameworks (MOFs) have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity, but the limited catalytic activity and stability has hampered their practical use in water splitting. Herein, we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs (donated as AE-CoNDA) to serve as efficient catalyst for water splitting. AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm−2 and a small Tafel slope of 62 mV dec−1 with excellent stability over 100 h. After integrated AE-CoNDA onto BiVO4, photocurrent density of 4.3 mA cm−2 is achieved at 1.23 V. Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p, which accounts for the fast kinetics and high activity. Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
|
Received: 17 December 2023
Published: 19 April 2024
|
Corresponding Authors:
Yang Hou
|
|
|
|
|
Fig. 1 PEC-OER performances of AE-CoNDA@BiVO4. a Schematic diagram of working principle of a proposed PEC-OER cell. b Polarization curves of BiVO4, CoNDA@BiVO4, and AE-CoNDA@BiVO4 without adding sacrificial agent (Na2SO3) under chopped AM 1.5G irradiation. c IPCE curves and d ABPE curves of BiVO4, CoNDA@BiVO4, and AE-CoNDA@BiVO4 under AM 1.5G irradiation. e Stability of AE-CoNDA@BiVO4 under AM 1.5G irradiation at 2.5 mA cm−2, inset: amount of O2 evolution detected by gas chromatography and calculated from photocurrent during the PEC-OER of AE-CoNDA@BiVO4 at 0.6 V. f Photocurrent density at 0.6 V and 1.23 V, IPCE, ABPE, and stability of AE-CoNDA@BiVO4 compared with other reported Co-based BiVO4 photoanodes. All experiments were carried out in a 1.0 M potassium borate (pH = 9.0) solution
|
|
Fig. 2 Electrocatalytic OER performances of AE-CoNDA. a Polarization curves and b Tafel slopes of AE-CoNDA, CoNDA, and Ir/C. c Internal and external voltammetric charge density and electron porosity of CoNDA and AE-CoNDA. d TOF values and e response of Rct at different potentials for CoNDA and AE-CoNDA. f Chronopotentiometric durability of AE-CoNDA at 1.5 V
|
|
Fig. 3 Electronic structure analysis of AE-CoNDA. High-resolution a Co 2p and b O 1s spectra of CoNDA and AE-CoNDA. c Co K-edge XANES spectra of AE-CoNDA, CoNDA, and Co foil. d Co L-edge XANES spectra of AE-CoNDA, CoNDA, CoO, and Co foil
|
|
Fig. 4 Fine structure analysis and spin state transition of AE-CoNDA. a Fourier transformed EXAFS spectra of AE-CoNDA, CoNDA, and Co foil, inset: EXAFS fitting curves in R space of AE-CoNDA and CoNDA. b O K-edge XANES spectra of AE-CoNDA, CoNDA, and CoO. c Temperature-dependent inverse susceptibilities of AE-CoNDA and CoNDA by the susceptibilities derived from the magnetizations (χ = M/H) follows by Curie-Weiss law. d An illustration of 3d-orbitals of AE-CoNDA and CoNDA
|
|
Fig. 5 Investigation on correlation between spin states of AE-CoNDA with OER activity. a An illustration of AE-CoNDA during OER process including the Co active sites and oxygen-contained intermediates adsorption. Calculated spin-resolved DOS of b AE-CoNDA and c CoNDA. d Calculated charge density difference of AE-CoNDA and CoNDA. The yellow and cyan regions represent electron accumulation and depletion. e The free energy diagrams of CoNDA and AE-CoNDA of OER
|
1. | M. Crespo-Quesada, L.M. Pazos-Outón, J. Warnan, M.F. Kuehnel, R.H. Friend et al., Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 12555 (2016). | 2. | X. Yu, V.L. Zholobenko, S. Moldovan, D. Hu, D. Wu et al., Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 5, 511-519 (2020). | 3. | J.Z. Zhang, E. Reisner, Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6-21 (2020). | 4. | T. Bouwens, T.M.A. Bakker, K. Zhu, J. Hasenack, M. Dieperink et al., Using supramolecular machinery to engineer directional charge propagation in photoelectrochemical devices. Nat. Chem. 15, 213-221 (2023). | 5. | V. Andrei, G.M. Ucoski, C. Pornrungroj, C. Uswachoke, Q. Wang et al., Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature 608, 518-522 (2022). | 6. | X. You, D. Zhang, X.-G. Zhang, X. Li, J.-H. Tian et al., Exploring the cation regulation mechanism for interfacial water involved in the hydrogen evolution reaction by in situ Raman spectroscopy. Nano-Micro Lett. 16, 53 (2023). | 7. | S. Lyu, C. Guo, J. Wang, Z. Li, B. Yang et al., Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks. Nat. Commun. 13, 6171 (2022). | 8. | K. Wang, Y. Wang, B. Yang, Z. Li, X. Qin et al., Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy Environ. Sci. 15, 2356-2365 (2022). | 9. | D.Y. Chung, P.P. Lopes, P. Farinazzo Bergamo Dias Martins, H. He, T. Kawaguchi et al., Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222-230 (2020). | 10. | Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329-338 (2019). | 11. | Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang et al., Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity. Chem 3, 812-821 (2017). | 12. | R.R. Rao, I.E.L. Stephens, J.R. Durrant, Understanding what controls the rate of electrochemical oxygen evolution. Joule 5, 16-18 (2021). | 13. | H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49, 1414-1448 (2020). | 14. | X. Zhou, B. Fu, L. Li, Z. Tian, X. Xu et al., Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction. Nat. Commun. 13, 5770 (2022). | 15. | J. Xie, F. Wang, Y. Zhou, Y. Dong, Y. Chai et al., Internal polarization field induced hydroxyl spillover effect for industrial water splitting electrolyzers. Nano-Micro. Lett. 16, 39 (2023). | 16. | X. Ling, F. Du, Y. Zhang, Y. Shen, W. Gao et al., Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 9, 13271-13278 (2021). | 17. | V. Andrei, R.A. Jagt, M. Rahaman, L. Lari, V.K. Lazarov et al., Long-term solar water and CO2 splitting with photoelectrochemical BiOI-BiVO4 tandems. Nat. Mater. 21, 864-868 (2022). | 18. | H. Wu, L. Zhang, A. Du, R. Irani, R. van de Krol et al., Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping. Nat. Commun. 13, 6231 (2022). | 19. | L.-W. Wu, C. Liu, Y. Han, Y. Yu, Z. Liu et al., In situ spectroscopic identification of the electron-transfer intermediates of photoelectrochemical proton-coupled electron transfer of water oxidation on Au. J. Am. Chem. Soc. 145, 2035-2039 (2023). | 20. | X. Zhang, P. Zhai, Y. Zhang, Y. Wu, C. Wang et al., Engineering single-atomic Ni-N4-O sites on semiconductor photoanodes for high-performance photoelectrochemical water splitting. J. Am. Chem. Soc. 143, 20657-20669 (2021). | 21. | Y. Qi, J. Zhang, Y. Kong, Y. Zhao, S. Chen et al., Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commun. 13, 484 (2022). | 22. | D. Lee, W. Wang, C. Zhou, X. Tong, M. Liu et al., The impact of surface composition on the interfacial energetics and photoelectrochemical properties of BiVO4. Nat. Energy 6, 287-294 (2021). | 23. | T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990-994 (2014). | 24. | Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal-organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023). | 25. | S. Zhao, C. Tan, C.-T. He, P. An, F. Xie et al., Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5, 881-890 (2020). | 26. | J. Yang, Y. Shen, Y. Sun, J. Xian, Y. Long et al., Ir nanoparticles anchored on metal-organic frameworks for efficient overall water splitting under pH-universal conditions. Angew. Chem. Int. Ed. 62, e202302220 (2023). | 27. | H. Hu, Z. Wang, L. Cao, L. Zeng, C. Zhang et al., Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358-366 (2021). | 28. | J. Xian, S. Li, H. Su, P. Liao, S. Wang et al., Electrosynthesis of α-amino acids from NO and other NOx species over CoFe alloy-decorated self-standing carbon fiber membranes. Angew. Chem. Int. Ed. 62, e202306726 (2023). | 29. | Z. Jiang, X. Xu, Y. Ma, H.S. Cho, D. Ding et al., Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586, 549-554 (2020). | 30. | Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li et al., Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 10, 5048 (2019). | 31. | W. Cheng, X. Zhao, H. Su, F. Tang, W. Che et al., Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115-122 (2019). | 32. | Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li et al., Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 12, 1369 (2021). | 33. | K. Liu, J. Fu, Y. Lin, T. Luo, G. Ni et al., Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 13, 2075 (2022). | 34. | F. Cheng, X. Peng, L. Hu, B. Yang, Z. Li et al., Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production. Nat. Commun. 13, 6486 (2022). | 35. | F. He, Q. Zheng, X. Yang, L. Wang, Z. Zhao et al., Spin-state modulation on metal-organic frameworks for electrocatalytic oxygen evolution. Adv. Mater. 35, e2304022 (2023). | 36. | L. Zhang, R. Long, Y. Zhang, D. Duan, Y. Xiong et al., Direct observation of dynamic bond evolution in single-atom Pt/C3 N4 catalysts. Angew. Chem. Int. Ed. Engl. 59, 6224-6229 (2020). | 37. | W.H. Lee, M.H. Han, Y.J. Ko, B.K. Min, K.H. Chae et al., Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 13, 605 (2022). | 38. | H. Tao, Y. Xu, X. Huang, J. Chen, L. Pei et al., A general method to probe oxygen evolution intermediates at operating conditions. Joule 3, 1498-1509 (2019). | 39. | S. Chibani, C. Michel, F. Delbecq, C. Pinel, M. Besson, On the key role of hydroxyl groups in platinum-catalysed alcohol oxidation in aqueous medium. Catal. Sci. Technol. 3, 339-350 (2013). | 40. | X. Kang, K. Lyu, L. Li, J. Li, L. Kimberley et al., Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. Nat. Commun. 10, 4466 (2019). | 41. | F. He, Y. Zhao, X. Yang, S. Zheng, B. Yang et al., Metal-organic frameworks with assembled bifunctional microreactor for charge modulation and strain generation toward enhanced oxygen electrocatalysis. ACS Nano 16, 9523-9534 (2022). | 42. | J.-Y. Zhang, Y. Yan, B. Mei, R. Qi, T. He et al., Local spin-state tuning of cobalt-iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 14, 365-373 (2021). | 43. | B.E. Van Kuiken, M. Khalil, Simulating picosecond iron K-edge X-ray absorption spectra by ab initio methods to study photoinduced changes in the electronic structure of Fe(II) spin crossover complexes. J. Phys. Chem. A 115, 10749-10761 (2011). | 44. | G. Zhou, P. Wang, H. Li, B. Hu, Y. Sun et al., Spin-sate reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Nat. Commun. 12, 4827 (2021). | 45. | J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383-1385 (2011). |
|
[1] |
Yayu Dong, Jian Zhang, Hongyu Zhang, Wei Wang, Boyuan Hu, Debin Xia, Kaifeng Lin, Lin Geng, Yulin Yang. Multifunctional MOF@COF Nanoparticles Mediated Perovskite Films Management Toward Sustainable Perovskite Solar Cells[J]. Nano-Micro Letters, 2024, 16(1): 171-. |
[2] |
Tian Mai, Lei Chen, Pei-Lin Wang, Qi Liu, Ming-Guo Ma. Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion[J]. Nano-Micro Letters, 2024, 16(1): 169-. |
[3] |
Zerui Chen, Wei Zhao, Qian Liu, Yifei Xu, Qinghe Wang, Jinmin Lin, Hao Bin Wu. Janus Quasi-Solid Electrolyte Membranes with Asymmetric Porous Structure for High-Performance Lithium-Metal Batteries[J]. Nano-Micro Letters, 2024, 16(1): 114-. |
[4] |
Hyeongtae Lim, Hyeokjin Kwon, Hongki Kang, Jae Eun Jang, Hyuk-Jun Kwon. Laser-Induced and MOF-Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature[J]. Nano-Micro Letters, 2024, 16(1): 113-. |
[5] |
Ximeng Liu, Dan Zhao, John Wang. Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework[J]. Nano-Micro Letters, 2024, 16(1): 157-. |
|
|
|
|