诊断学理论与实践 ›› 2024, Vol. 23 ›› Issue (04): 398-404.doi: 10.16150/j.1671-2870.2024.04.008
赵珺涛1,2, 袁捷2,#, 刘锦燕2, 陈柯志1,2, 项明洁1,2(
)
收稿日期:2023-08-22
接受日期:2023-11-05
出版日期:2024-08-25
发布日期:2024-08-25
通讯作者:
项明洁 E-mail: mjxiang123456@126.com作者简介:第一联系人:#: 共同第一作者
基金资助:
ZHAO Juntao1,2, YUAN Jie2,#, LIU Jinyan2, CHEN Kezhi1,2, XIANG Mingjie1,2(
)
Received:2023-08-22
Accepted:2023-11-05
Published:2024-08-25
Online:2024-08-25
摘要:
目的:构建光滑念珠菌FLO8基因敲除株,并分析FLO8敲除对光滑念珠菌上皮黏附素(epithelial adhesin, EPA)家族表达的影响。方法:使用融合PCR技术,以光滑念珠菌ATCC2001菌株基因组DNA、带有筛选标记诺尔斯菌素抗性基因(NAT)的质粒DNA为模板,构建敲除组件。采用醋酸锂转染法将敲除组件转染入ATCC2001中,从而获得flo8△菌株。使用实时荧光定量PCR检测菌株中EPA1、EPA6和EPA7基因的表达。结果:获得光滑念珠菌FLO8基因敲除株flo8△,该菌株的EPA1、EPA6和EPA7基因表达水平对明显低于ATCC2001株(P均<0.001)。结论:此法可便捷、有效地构建光滑念珠菌基因敲除菌株。敲除FLO8基因后,光滑念珠菌的EPA家族表达降低,为进一步研究光滑念珠菌毒力机制奠定基础。
中图分类号:
赵珺涛, 袁捷, 刘锦燕, 陈柯志, 项明洁. 运用融合PCR技术敲除光滑念珠菌FLO8基因以及其对EPA黏附素家族表达的影响[J]. 诊断学理论与实践, 2024, 23(04): 398-404.
ZHAO Juntao, YUAN Jie, LIU Jinyan, CHEN Kezhi, XIANG Mingjie. Knocking out FLO8 gene of Candida glabrata and its effect on EPA family[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(04): 398-404.
表1
引物序列
| Primer | Sequence (5’→3’) |
|---|---|
| Up F | GGGCTTCCCTTCGAGACTAC |
| Up R | cccggacagccgctaggaggtTTAACGCCCAGTGGAACCC |
| NAT F | acctcctagcggctgtccgggGTTGTAAAACGACGGCCAGT |
| NAT R | ctcgggactatcgggctacggAGGAAACAGCTATGACCATG |
| Down F | ccgtagcccgatagtcccgagTTTTAACCAACATGAATTCTCGC |
| Down R | TGGATAGGATTACCAGTATTTAAACAAC |
| FLO8-KO F | TTTTCAACACGACCACCAATCG |
| FLO8-KO R | GTTGACTTGAAGATCTCGTCCTC |
| T-FLO8 F | TCTCGTCTGCCCTCCCCTT |
| T-FLO8 R | GTTTCCGGCTGCACTGTTTCT |
| RT-EPA1 F | ACCGCAAGAAAATCCTCCTCC |
| RT-EPA1 R | TGGTGCTGATGATATTGATTTGTTG |
| RT-EPA6 F | GAAATCAGGATCGAATCCATG |
| RT-EPA6 R | GTGGTAATGTATCAAACAGCG |
| RT-EPA7 F | TGATTTACGGAAGAATGGTTCG |
| RT-EPA7 R | TTACCGGTAACACCATCAACT |
| RT-ACTIN F | TTCCAGCCTTCTACGTTTCC |
| RT-ACTIN R | TCTACCAGCAAGGTCGATTC |
| [1] |
DESAI C, MAVRIANOS J, CHAUHAN N. Candida glabrata Pwp7p and Aed1p are required for adherence to human endothelial cells[J]. FEMS Yeast Res, 2011, 11(7):595-601.
doi: 10.1111/j.1567-1364.2011.00743.x pmid: 21726406 |
| [2] | VALOTTEAU C, PRYSTOPIUK V, CORMACK B P, et al. Atomic force microscopy demonstrates that Candida glabrata uses three Epa proteins to mediate adhesion to abiotic surfaces[J]. mSphere, 2019, 4(3):e00277-e00219. |
| [3] |
ALEXANDER B D, JOHNSON M D, PFEIFFER C D, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations[J]. Clin Infect Dis, 2013, 56(12):1724-1732.
doi: 10.1093/cid/cit136 pmid: 23487382 |
| [4] | GALOCHA M, PAIS P, CAVALHEIRO M, et al. Divergent approaches to virulence in C. albicans and C. glabrata: two sides of the same coin[J]. Int J Mol Sci, 2019, 20(9):2345. |
| [5] | TIMMERMANS B, DE LAS PEÑAS A, CASTAÑO I, et al. Adhesins in Candida glabrata[J]. J Fungi (Basel), 2018, 4(2):60. |
| [6] |
KUCHARÍKOVÁ S, TOURNU H, LAGROU K, et al. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin[J]. J Med Microbiol, 2011, 60(Pt 9):1261-1269.
doi: 10.1099/jmm.0.032037-0 pmid: 21566087 |
| [7] |
CASTAÑO I, PAN S J, ZUPANCIC M, et al. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata[J]. Mol Microbiol, 2005, 55(4):1246-1258.
pmid: 15686568 |
| [8] |
CAO F, LANE S, RANIGA P P, et al. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans[J]. Mol Biol Cell, 2006, 17(1):295-307.
pmid: 16267276 |
| [9] |
FOX E P, BUI C K, NETT J E, et al. An expanded regulatory network temporally controls Candida albicans biofilm formation[J]. Mol Microbiol, 2015, 96(6):1226-1239.
doi: 10.1111/mmi.13002 pmid: 25784162 |
| [10] | 俞焙秦, 江岑, 董丹凤, 等. 光滑假丝酵母PDR1基因敲除菌株的建立[J]. 生物技术, 2013, 23(4):43-46. |
| YU B Q, JIANG C, DONG D F, et al. Construction of a PDR1 Knock-out Strain of Candida glabrata[J]. Biotechnol, 2013, 23(4):43-46. | |
| [11] | SCHWARZMÜLLER T, MA B, HILLER E, et al. Systema-tic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes[J]. PLoS Pathog, 2014, 10(6):e1004211. |
| [12] |
李文静, 刘锦燕, 史册, 等. 融合PCR结合同源重组技术敲除白色假丝酵母菌FLO8基因[J]. 上海交通大学学报(医学版), 2016, 36(3):334-339.
doi: 10.3969/j.issn.16748115.2016.03.004 |
| LI W J, LIU J Y, SHI C, et al. Knock out FLO8 gene in Candida albicans by fusion PCR combined with homologous recombination[J]. J Shanghai Jiaotong Univ(Med Sci), 2016, 36(3):334-339. | |
| [13] | 王钰婷, 刘锦燕, 史册, 等. 白念珠菌ERG3基因敲除及其对耐药性的影响[J]. 上海交通大学学报(医学版), 2020, 40(2):163-170. |
| WANH Y T, LIU J Y, SHI C, et al. Knocking out ERG3 gene of Candida albicans and its effect on drug resistance[J]. J Shanghai Jiaotong Univ(Med Sci), 2020, 40(2):163-170. | |
| [14] | 李文静, 刘明, 刘锦燕, 等. 白念珠菌FLO8基因突变株构建及鉴定[J]. 中国真菌学杂志, 2016, 11(1):1-7. |
| LI W J, LIU M, LIU J Y, et al. Construction and identification of Candida albicans FLO8 mutations[J]. Chin J Mycol, 2016, 11(1):1-7. | |
| [15] |
UENO K, UNO J, NAKAYAMA H, et al. Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata[J]. Eukaryot Cell, 2007, 6(7):1239-1247.
doi: 10.1128/EC.00414-06 pmid: 17513567 |
| [16] |
STAAB J F, SUNDSTROM P. URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes[J]. Trends Microbiol, 2003, 11(2):69-73.
doi: 10.1016/s0966-842x(02)00029-x pmid: 12598128 |
| [17] |
BRAND A, MACCALLUM D M, BROWN A J, et al. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus[J]. Eukaryot Cell, 2004, 3(4):900-909.
doi: 10.1128/EC.3.4.900-909.2004 pmid: 15302823 |
| [18] |
LAY J, HENRY L K, CLIFFORD J, et al. Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies[J]. Infect Immun, 1998, 66(11):5301-5306.
doi: 10.1128/IAI.66.11.5301-5306.1998 pmid: 9784536 |
| [19] | 李振, 钱增堃, 刘福荣, 等. MALDI-TOF MS技术在真菌鉴定中的应用[J]. 安徽医学, 2022, 43(4):479-481. |
| LI Zhen, QIAN Zengkun, LIU Furon, et al. The Application of MALDI-TOF MS Technology in the Identification of Fungi[J]. J Anhui Med, 2022, 43(4):479-481. | |
| [20] | 胡谢飞, 邬文燕, 智深深, 等. 一种用于脓毒症快速检测的多重PCR检测体系构建[J]. 重庆医科大学学报, 2022, 47(8):982-988. |
| HU X F, WU W Y, ZHI S S, et al. Establishment of a multiplex PCR system for rapid detection of sepsis[J]. J Chongqing Med Univ, 2022, 47(8):982-988. | |
| [21] | VITENSHTEIN A, CHARPAK-AMIKAM Y, YAMIN R, et al. NK cell recognition of Candida glabrata through binding of NKp46 and NCR1 to fungal ligands Epal, Epa6, and Epa7[J]. Cell Host Microbe, 2016, 20(4):527-534. |
| [1] | 王影, 吕权真, 阎澜, 刘锦燕, 史册, 李文静, 项明洁,. 白念珠菌锌簇转录因子编码基因mrr2敲除与鉴定[J]. 诊断学理论与实践, 2015, 14(02): 164-168. |
| [2] | 范能光, 王计秋, 孙海燕, 宁光, 杨军,. LGR4基因调控小鼠肺组织糖皮质激素受体表达及肺发育[J]. 诊断学理论与实践, 2008, 7(04): 416-420. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||