论著

α7烟碱型乙酰胆碱受体激动剂对TGF-β1介导的血管外膜成纤维细胞表型转化影响的体外研究

展开
  • 1. 上海交通大学医学院附属瑞金医院检验科,上海 200025
    2. 上海市高血压研究所,上海 200025

收稿日期: 2018-09-20

  网络出版日期: 2019-02-25

Effect of α7 nicotinic acetylcholine receptor activation on transforming growth factor β1-induced phenotypic transformation of adventitia fibroblasts studied in vitro

Expand
  • 1. Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
    2. Shanghai Institute of Hypertension, Shanghai 200025, China

Received date: 2018-09-20

  Online published: 2019-02-25

摘要

目的 探讨α7烟碱型乙酰胆碱受体(α7 nicotinic acetylcholine receptor, α7 nAchR)与血管外膜成纤维细胞(adventitial fibroblasts, AF)表型转化间的关系。方法 选取雄性Sprague-Dawley(SD)大鼠,用组织切块法培养其胸主动脉外膜AF。为评估转化生长因子β1(transforming growth factor-β1, TGF-β1)刺激AF表型转化的作用,将体外培养的AF分为空白对照组A、TGF-β1处理24 h组和TGF-β1处理48 h组3组,处理结束后分别应用实时定量PCR和免疫印迹试验,检测相α7 nAchR基因和蛋白的表达以及α-肌动蛋白(α smooth muscle actin, α-SMA)和Ⅰ型胶原的表达情况。为进一步探讨α7 nAchR的激活能否抑制TGF-β1刺激表型转化及其分子机制,另将体外培养的AF分为空白对照组B、TGF-β1处理48 h组及TGF-β1处理48 h合并α7 nAchR激活剂PNU-282987处理组3组,处理48 h后用免疫印迹法检测α-SMA和Ⅰ型胶原的表达及细胞外调节蛋白激酶1/2(extracellular regulated protein kinases1/2, Erk1/2)磷酸化情况。结果 与空白对照A相比,TGF-β1可使α7 nAchR的基因和蛋白表达明显降低(P<0.05),同时TGF-β1可使α-SMA和Ⅰ型胶原的表达明显增加(P<0.05)。α7 nAchR激动剂PNU-282987可抑制TGF-β1刺激的AF中α-SMA和Ⅰ型胶原的表达,亦可抑制TGF-β1刺激的Erk1/2磷酸化。结论 α7 nAchR的抑制参与TGF-β1介导的血管AF表型转化,其机制可能与Erk1/2磷酸化有关。

本文引用格式

魏坚, 高平进, 韩卫青 . α7烟碱型乙酰胆碱受体激动剂对TGF-β1介导的血管外膜成纤维细胞表型转化影响的体外研究[J]. 诊断学理论与实践, 2019 , 18(1) : 56 -60 . DOI: 10.16150/j.1671-2870.2019.01.011

Abstract

Objective: To investigate the correlation between α7 nicotinic acetylcholine receptor (α7 nAchR) and phenotypic transformation of adventitial fibroblasts (AF). Methods: AF were isolated and cultured by using thoracic aorta of male Sprague-Dawley (SD) rats. For evaluating the effect of transforming growth factor-β1 (TGF-β1) on phenotypic transformation of AF, cultured AF were divided into three groups: blank control group A, group with 24 h TGF-β1 treatment, and group with 48 h TGF-β1 treatment. After treatment, real-time quantitative PCR and western blotting were used to detect the mRNA level and protein level of α7 nAchR, and the expression of a smooth muscle actin (α-SMA) and collagen Ⅰ. To further explore whether the activation of α7 nAchR can inhibit TGF-β1-induced phenotypic transformation and the underlying molecular mechanism, AF cultured in vitro were divided into three groups: blank control group B, group with 48 h TGF-β1 treatment, and group with 48 h TGF-β1 +PNU-282987 (an α7 nAchR activator) treatment. After 48 h treatment, the expression of α-SMA and collagen Ⅰ and the phosphorylation of extracellular regulated protein kinase 1/2 (Erk1/2) were detected by immunoblotting. Results: Compared with the blank control group A, TGF-β1 significantly decreased the mRNA level and protein level of α7 nAchR (P<0.05), whereas TGF-β1 induced significant increase of a-SMA and collagen Ⅰ (P<0.05). PNU-282987, an α7 nAchR agonist, inhibited TGF-β1-induced expression of α-SMA and collagen typeⅠ. Meanwhile, PNU-282987 also significantly inhibited TGF-β1-induced Erk1/2 phosphorylation. Conclusions: The inhibition of α7 nAchR is involved in TGF-β1-induced phenotypic transformation in AF, and the mechanism may be related to Erk1/2 phosphorylation.

参考文献

[1] Mann T, Zilles K, Klawitter F, et al. Acetylcholine Neurotransmitter Receptor Densities in the Striatum of Hemiparkinsonian Rats Following Botulinum Neurotoxin-A Injection[J]. Front Neuroanat, 2018, 12:65.
[2] Carlisle DL, Hopkins TM, Gaither-Davis A, et al. Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts[J]. Respir Res, 2004, 5:27.
[3] Ween H, Thorin-Hagene K, Andersen E, et al. Alpha3* and alpha 7 nAChR-mediated Ca2+ transient generation in IMR-32 neuroblastoma cells[J]. Neurochem Int, 2010, 57(3):269-277.
[4] Komal P, Gudavicius G, Nelson CJ, et al. T-cell receptor activation decreases excitability of cortical interneurons by inhibiting α7 nicotinic receptors[J]. J Neurosci, 2014, 34(1):22-35.
[5] Liu Q, Xie X, Emadi S, et al. A novel nicotinic mechanism underlies β-amyloid-induced neurotoxicity[J]. Neuropharmacology, 2015, 97:457-63.
[6] Su X, Lee JW, Matthay ZA, et al. Activation of the alpha7 nAChR reduces acid-induced acute lung injury in mice and rats[J]. Am J Respir Cell Mol Biol, 2007, 37(2):186-192.
[7] Liu Q, Liu C, Jiang L, et al. α 7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation[J]. J Pain Res, 2018, 11:1129-1140.
[8] Li XW, Wang H. Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization[J]. Life Sci, 2006, 78(16):1863-1870.
[9] Xu F, Liu Y, Shi L, et al. RGS 3 inhibits TGF-β1/Smad signalling in adventitial fibroblasts[J]. Cell Biochem Funct, 2017, 35(6):334-338.
[10] Xu JY, Chang NB, Li T, et al. Endothelial Cells Inhibit the Angiotensin II Induced Phenotypic Modulation of Rat Vascular Adventitial Fibroblasts[J]. J Cell Biochem, 2017, 118(7):1921-1927.
[11] Herrmann J, Samee S, Chade A, et al. Differential effect of experimental hypertension and hypercholesterolemia on adventitial remodeling[J]. Arterioscler Thromb Vasc Biol, 2005, 25(2):447-453.
[12] Sartore S, Chiavegato A, Faggin E, et al. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant[J]. Circ Res, 2001, 89(12):1111-1121.
[13] Coen M, Gabbiani G, Bochaton-Piallat ML. Myofibroblast-mediated adventitial remodeling: an underestimated player in arterial pathology[J]. Arterioscler Thromb Vasc Biol, 2011, 31(11):2391-2396.
[14] Maiellaro K, Taylor WR. The role of the adventitia in vascular inflammation[J]. Cardiovasc Res, 2007, 75(4):640-648.
[15] Forte A, Della Corte A, De Feo M, et al. Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm[J]. Cardiovasc Res, 2010, 88(3):395-405.
[16] Kingston PA, Sinha S, David A, et al. Adenovirus-mediated gene transfer of a secreted transforming growth factor-beta type Ⅱ receptor inhibits luminal loss and constrictive remodeling after coronary angioplasty and enhances adventitial collagen deposition[J]. Circulation, 2001, 104(21):2595-2601.
[17] Wildgruber M, Weiss W, Berger H, et al. Association of circulating transforming growth factor beta, tumor necrosis factor alpha and basic fibroblast growth factor with restenosis after transluminal angioplasty[J]. Eur J Vasc Endovasc Surg, 2007, 34(1):35-43.
[18] Khan R, Agrotis A, Bobik A. Understanding the role of transforming growth factor-beta1 in intimal thickening after vascular injury[J]. Cardiovasc Res, 2007, 74(2):223-234.
[19] Gao PJ, Li Y, Sun AJ, et al. Differentiation of vascular myofibroblasts induced by transforming growth factor-beta1 requires the involvement of protein kinase Calpha[J]. J Mol Cell Cardiol, 2003, 35(9):1105-1112.
[20] Fleenor BS, Marshall KD, Durrant JR, et al. Arterial stiffening with ageing is associated with transforming growth factor-β1-related changes in adventitial collagen: reversal by aerobic exercise[J]. J Physiol, 2010, 588(Pt 20):3971-3982.
[21] Ren M, Wang B, Zhang J, et al. Smad2 and Smad3 as mediators of the response of adventitial fibroblasts induced by transforming growth factor β1[J]. Mol Med Rep, 2011, 4(3):561-567.
[22] Li X, Xu Y, Cheng Y, et al. α 7 Nicotinic acetylcholine receptor contributes to the alleviation of lung ischemia-reperfusion injury by transient receptor potential vanilloid type 1 stimulation[J]. J Surg Res, 2018, 230:164-174.
[23] Luo W, Liu X, Sun W, et al. Toosendanin, a natural product, inhibited TGF-β1-induced epithelial-mesenchymal transition through ERK/Snail pathway[J]. Phytother Res, 2018, 32(10):2009-2020.
文章导航

/