论著

鲍曼不动杆菌生物被膜形成能力的研究

展开
  • 上海交通大学医学院附属新华医院检验科, 上海 200092

收稿日期: 2019-02-21

  网络出版日期: 2019-10-25

Study on in vitro biofilm formation ability of Acinetobacter baumannii

Expand
  • Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China

Received date: 2019-02-21

  Online published: 2019-10-25

摘要

目的:研究鲍曼不动杆菌生物被膜形成能力的影响因素,为临床防治鲍曼不动杆菌医院感染和控制其生物被膜形成提供依据。方法:收集2017年10月至12月上海交通大学医学院附属新华医院感染患者分离到的101株鲍曼不动杆菌,利用结晶紫染色法检测其生物被膜在不同温度条件下的形成能力;采用VITEK 2 Compact全自动微生物分析仪联合纸片扩散法对菌株进行药物敏感性(药敏)试验;用PCR技术检测菌株生物被膜形成相关基因(bapabaIbfmScsuABcsuAcsuCcsuDcsuEcpaAompA)的携带情况。结果:在25 ℃条件下,101株鲍曼不动杆菌的生物被膜形成阳性率(93.1%)比35 ℃时(60.4%)高(P<0.05);临床分离株对氨苄西林/舒巴坦和氨基糖苷类药物的耐药率与生物被膜形成能力间存在一定关系(P<0.05),生物被膜形成能力为强阳性(++)的菌株对上述抗菌药物的耐药率显著低于生物被膜形成能力为阳性(+)或阴性(-)的菌株的耐药率,但是耐药率并不是随着生物被膜形成能力的增强而降低的,生物被膜形成能力为阳性(+)的菌株的耐药率反而高于形成能力为阴性(-)的菌株。鲍曼不动杆菌生物被膜形成能力的强弱与其是否携带以上10种相关基因间并无统计学相关性(P>0.05)。结论:鲍曼不动杆菌生物被膜形成能力与培养温度有关,与培养温度35 ℃相比,25 ℃条件时生物被膜形成能力高,亦与氨苄西林/舒巴坦及氨基糖苷类药物的耐药率间存在某种关联,但其与是否携带生物被膜形成相关基因(bapabaI等)无关。

本文引用格式

皇甫昱婵, 刁文晶, 俞静, 刘瑛, 沈立松 . 鲍曼不动杆菌生物被膜形成能力的研究[J]. 诊断学理论与实践, 2019 , 18(05) : 532 -537 . DOI: 10.16150/j.1671-2870.2019.05.009

Abstract

Objective: To study the in vitro biofilm formation ability of Acinetobacter baumannii for providing a reference for clinical prevention and treatment of Acinetobacter baumannii infection and control of its biofilm formation. Methods: One hundred and one strains of Acinetobacter baumannii isolated from infected patients at Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine from October to December 2017 were collected. The ability of the strains to form biofilm at different temperatures was detected by crystal violet staining; the antimicrobial susceptibility test was performed by Vitek2 Compact and the disc diffusion method. The carrying status of biofilm formation-related genes (bap, abaI, bfmS, csuAB, csuA, csuC, csuD, csuE, cpaA, and ompA) was detected by PCR. Results: The positive rate of Acinetobacter baumannii biofilm formation at 25 ℃ (93.1%) was significantly higher than that at 35 ℃ (60.4%) (P<0.05). There was a correlation between the resistance rate of isolates to Ampicillin/Sulbactam or Aminoglycosides and the biofilm formation ability (P<0.05); and there was no significant correlation between the biofilm formation ability and whether it carried the abovementioned 10 related genes (P>0.05). Conclusions: The biofilm formation ability of Acinetobacter baumannii is related to the culture temperature, and also correlated in some degree with the resistance rate to Ampicillin/sulbactam and Aminoglycosides. However, the biofilm formation ability is not related to the abovementioned 10 related genes (bap, abaI, etc.).

参考文献

[1] Gonzalez-Villoria AM, Valverde-Garduno V. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen[J]. J Pathog, 2016, 2016:7318075.
[2] 胡付品, 郭燕, 朱德妹, 等. 2017年CHINET中国细菌耐药性监测[J]. 中国感染与化疗杂志, 2018, 18(3):241-251.
[3] Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious disea-ses[J]. Nat Rev Microbiol, 2004, 2(2):95-108.
[4] Vatan A, Saltoglu N, Yemisen M, et al. Association between biofilm and multi/extensive drug resistance in diabetic foot infection[J]. Int J Clin Pract, 2018, 72(3):e13060.
[5] Babapour E, Haddadi A, Mirnejad R, et al. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance[J]. Asian Pac J Trop Biomed, 2016, 6(6):528-533.
[6] Tomaras AP1, Flagler MJ, Dorsey CW, et al. Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology[J]. Microbiology, 2008, 154(Pt 11):3398-3409.
[7] Tomaras AP, Dorsey CW, Edelmann RE, et al. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chape-rone-usher pili assembly system[J]. Microbiology, 2003, 149(Pt 12):3473-3484.
[8] Aliramezani A, Douraghi M, Hajihasani A, et al. Clonal relatedness and biofilm formation of OXA-23-producing carbapenem resistant Acinetobacter baumannii isolates from hospital environment[J]. Microb Pathog, 2016, 99:204-208.
[9] Vatan A, Saltoglu N, Yemisen M, et al. Association between biofilm and multi/extensive drug resistance in diabetic foot infection[J]. Int J Clin Pract, 2018, 72(3):e13060.
[10] Gurung J, Khyriem AB, Banik A, et al. Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit[J]. Indian J Crit Care Med, 2013, 17(4):214-218.
[11] 赖其伟, 黄丽芳. 不鲍曼不动杆菌生物被膜与耐药性的相关性分析[J]. 国际检验医学杂志, 2016, 37(2):153-154.
[12] Gopal R, Kim YG, Lee JH, et al. Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains[J]. Antimicrob Agents Chemother, 2014, 58(3):1622-1629.
[13] Qi L, Li H, Zhang C, et al. Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii[J]. Front Micro-biol, 2016, 7:483.
[14] 刘原, 柯蕊, 杨妮, 等. 呼吸道分离鲍曼不动杆菌生物被膜形成能力与耐药性关系的研究[J]. 中国实验诊断学, 2015, 19(8):1243-1246.
[15] Wen H, Wang K, Liu Y, et al. Population dynamics of an Acinetobacter baumannii clonal complex during colonization of patients[J]. J Clin Microbiol, 2014, 52(9):3200-3208.
[16] Abdi-Ali A, Hendiani S, Mohammadi P, et al. Assessment of Biofilm Formation and Resistance to Imipenem and Ciprofloxacin among Clinical Isolates of Acinetobacter baumannii in Tehran[J]. Jundishapur J Microbiol, 2014, 7(1):e8606.
[17] Tilley D, Law R, Warren S, et al. CpaA a novel protease from Acinetobacter baumannii clinical isolates deregulates blood coagulation[J]. FEMS Microbiol Lett, 2014, 356(1):53-61.
[18] Ghasemi E, Ghalavand Z, Goudarzi H, et al. Phenotypic and Genotypic Investigation of Biofilm Formation in Clinical and Environmental Isolates of Acinetobacter baumannii[J]. Arch Clin Infect Dis, 2018, 13(4):e12914.
[19] Thummeepak R, Kongthai P, Leungtongkam U, et al. Distribution of virulence genes involved in biofilm formation in multi-drug resistant Acinetobacter baumannii clini-cal isolates[J]. Int Microbiol, 2016, 19(2):121-129.
[20] Fallah A, Rezaee MA, Hasani A, et al. Frequency of bap and cpaA virulence genes in drug resistant clinical isolates of Acinetobacter baumannii and their role in biofilm formation[J]. Iran J Basic Med Sci, 2017, 20(8):849-855.
[21] Ali HM, Salem MZM, El-Shikh MS, et al. Investigation of the Virulence Factors and Molecular Characterization of the Clonal Relations of Multidrug-Resistant Acinetobacter baumannii Isolates[J]. J AOAC Int, 2017, 100(1):152-158.
[22] Liu H, Wu YQ, Chen LP, et al. Biofilm-Related Genes: Analyses in Multi-Antibiotic Resistant Acinetobacter Baumannii Isolates From Mainland China[J]. Med Sci Monit, 2016, 22:1801-1807.
[23] 童飞, 汪跃国, 范骁钦. 2015-2016年重症监护病房鲍曼不动杆菌感染及耐药分析[J]. 安徽医学, 2017, 38(12):1583-1585.
[24] Selasi GN, Nicholas A, Jeon H, et al. Differences in Biofilm Mass, Expression of Biofilm-Associated Genes, and Resistance to Desiccation between Epidemic and Sporadic Clones of Carbapenem-Resistant Acinetobacter baumannii Sequence Type 191[J]. PLoS One, 2016, 11(9):e0162576.
[25] Marti S, Nait Chabane Y, Alexandre S, et al. Growth of Acinetobacter baumannii in pellicle enhanced the expression of potential virulence factors[J]. PLoS One, 2011, 6(10):e26030.
文章导航

/