收稿日期: 2019-12-03
网络出版日期: 2019-12-25
基金资助
上海交通大学“医工交叉”(ZH2018QNA52)
Study on motion characteristics of gastric cancer cells using glassy dynamics analysis
Received date: 2019-12-03
Online published: 2019-12-25
目的:运用玻璃动力学分析方法,研究胃癌细胞在液体培养条件下的运动特点。方法:运用慢病毒包装技术将绿色荧光蛋白转染进细胞,在激光共聚焦显微镜下实时记录胃癌细胞在X、Y、Z轴上的位置,应用玻璃动力学分析方法分析细胞速度分布、细胞运动的均方位移以及自相关重叠序参量Q与四点相关函数χ4。结果:在荧光倒置显微镜下观察,可见细胞转染效率为100%。在激光共聚焦显微镜下观察,细胞速度分布呈高斯分布,均方位移统计分析得出细胞在XY平面上的自扩散系数D随着体系中细胞密度增加而减小。自相关重叠序参量Q与四点相关函数χ4统计显示,细胞玻璃动力学随密度增加而更显著。结论:液体环境中胃癌细胞运动受到体系中细胞密度的影响,表现出玻璃动力学性质。
姜江, 曾志坤, 石博文, 潘召城, 颜凌, 王宇杰, 张欢 . 玻璃动力学分析方法研究胃癌细胞运动学特点[J]. 诊断学理论与实践, 2019 , 18(06) : 645 -648 . DOI: 10.16150/j.1671-2870.2019.06.008
Objective: To study the motion characteristics of gastric cancer cells in liquid culture environment using glassy dynamics analysis. Methods: Lentiviral vector carrying green fluorescent protein (GFP) was transfected into gastric cancer cells. Trajectories of gastric cancer cells along X, Y, and Z axis in the liquid environment were recorded at real time under the laser scanning confocal microscope. Glassy dynamics analysis was used to analyze the velocity distribution, mean square displacements (MSD) of gastric cells, and function χ4 (Δt) of self-overlap function Q on four-point susceptibi-lity was established. Results: Observation under inverted fluorescence microscope showed that cell transfection efficiency was 100%. Laser con-focal microscopy showed that cell velocity distribution presented the Gaussian distribution. With the increase of cell density, self-diffusion constant D in XY plane by MSD calculation decreased and glassy dynamics of cells aggravated by function χ4. Conclusions: The motion of gastric cancer cells is influenced by cell density in the liquid environment and presenting the characteristics of glassy dynamics.
Key words: Gastric cancer; Cell motion; Glassy dynamics
[1] | Bi D, Yang X, Marchetti MC, et al. Motility-driven glass and jamming transitions in biological tissues[J]. Phys Rev X, 2016, 6(2):pii: 021011. |
[2] | Friedl P, Hegerfeldt Y, Tusch M. Collective cell migration in morphogenesis and cancer[J]. Int J Dev Biol, 2004, 48(5-6):441-449. |
[3] | Martin P, Parkhurst SM. Parallels between tissue repair and embryo morphogenesis[J]. Development, 2004, 131(13):3021-3034. |
[4] | Lecaudey V, Gilmour D. Organizing moving groups du-ring morphogenesis[J]. Curr Opin Cell Biol, 2006, 18(1):102-107. |
[5] | Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration[J]. Curr Opin Cell Biol, 2004, 16(1):14-23. |
[6] | Scarpa E, Mayor R. Collective cell migration in development[J]. J Cell Biol, 2016, 212(2):143-155. |
[7] | Park JA, Kim JH, Bi D, et al. Unjamming and cell shape in the asthmatic airway epithelium[J]. Nat Mater, 2015, 14(10):1040-1048. |
[8] | Brownsey GJ, Noel TR, Parker R, et al. The glass transition behavior of the globular protein bovine serum albumin[J]. Biophys J, 2003, 85(6):3943-3950. |
[9] | Giavazzi F, Paoluzzi M, Macchi M, et al. Flocking transitions in confluent tissues[J]. Soft Matter, 2018, 14(18):3471-3477. |
[10] | Paul CD, Mistriotis P, Konstantopoulos K. Cancer cell motility: lessons from migration in confined spaces[J]. Nat Rev Cancer, 2017, 17(2):131-140. |
[11] | Kou B, Cao Y, Li J, et al. Granular materials flow like complex fluids[J]. Nature, 2017, 551(7680):360-363. |
[12] | Carcas LP. Gastric cancer review[J]. J Carcinog, 2014, 13:14. |
[13] | Wagner AD, Syn NL, Moehler M, et al. Chemotherapy for advanced gastric cancer[J]. Cochrane Database Syst Rev, 2017, 8:CD004064. |
[14] | Nieto MA, Huang RY, Jackson RA, et al. EMT: 2016[J]. Cell, 2016, 166(1):21-45. |
/
〈 |
|
〉 |