收稿日期: 2019-07-31
网络出版日期: 2019-10-25
刘海霞, 瞿介明 . 肺部微生态及其与肺癌关系的研究进展[J]. 诊断学理论与实践, 2019 , 18(05) : 496 -502 . DOI: 10.16150/j.1671-2870.2019.05.003
[1] | Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals[J]. MBio, 2015, 6(2):e00037. |
[2] | Marsh RL, Kaestli M, Chang AB, et al. The microbiota in bronchoalveolar lavage from young children with chronic lung disease includes taxa present in both the oropharynx and nasopharynx[J]. Microbiome, 2016, 4(1):37. |
[3] | Dickson RP, Huffnagle GB. The Lung Microbiome: New Principles for Respiratory Bacteriology in Health and Di-sease[J]. PLoS Pathog, 2015, 11(7):e1004923. |
[4] | Morris A, Beck JM, Schloss PD, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smo-kers[J]. Am J Respir Crit Care Med, 2013, 187(10):1067-1075. |
[5] | Budden KF, Shukla SD, Rehman SF, et al. Functional effects of the microbiota in chronic respiratory disease[J]. Lancet Respir Med, 2019, 7(10):907-920. |
[6] | Huang YJ, Lynch SV. The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications[J]. Expert Rev Respir Med, 2011, 5(6):809-821. |
[7] | Dickson RP, Erb-Downward JR, Huffnagle GB. Homeos-tasis and its disruption in the lung microbiome[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(10):L1047-L1055. |
[8] | Putinati S, Trevisani L, Gualandi M, et al. Pulmonary infections in lung cancer patients at diagnosis[J]. Lung Cancer, 1994, 11(3-4):243-249. |
[9] | Belmont L, Rabbe N, Antoine M, et al. Expression of TLR9 in tumor-infiltrating mononuclear cells enhances angiogenesis and is associated with a worse survival in lung cancer[J]. Int J Cancer, 2014, 134(4):765-777. |
[10] | Chow SC, Gowing SD, Cools-Lartigue JJ, et al. Gram negative bacteria increase non-small cell lung cancer metastasis via Toll-like receptor 4 activation and mitogen-activated protein kinase phosphorylation[J]. Int J Cancer, 2015, 136(6):1341-1350. |
[11] | Gomes M, Teixeira AL, Coelho A, et al. The role of inflammation in lung cancer[J]. Adv Exp Med Biol, 2014, 816:1-23. |
[12] | Christopoulos A, Saif MW, Sarris EG, et al. Epidemiology of active tuberculosis in lung cancer patients: a systema-tic review[J]. Clin Respir J, 2014, 8(4):375-381. |
[13] | Boursi B, Mamtani R, Haynes K, et al. Recurrent anti-biotic exposure may promote cancer formation--Another step in understanding the role of the human microbiota?[J]. Eur J Cancer, 2015, 51(17):2655-2664. |
[14] | Hosgood HD 3rd, Sapkota AR, Rothman N, et al. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures[J]. Environ Mol Mutagen, 2014, 55(8):643-651. |
[15] | Lee SH, Sung JY, Yong D, et al. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions[J]. Lung Cancer, 2016, 102:89-95. |
[16] | Yan X, Yang M, Liu J, et al. Discovery and validation of potential bacterial biomarkers for lung cancer[J]. Am J Cancer Res, 2015, 5(10):3111-3122. |
[17] | Liu HX, Tao LL, Zhang J, et al. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects[J]. Int J Cancer, 2018, 142(4):769-778. |
[18] | Yu G, Gail MH, Consonni D, et al. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features[J]. Genome Biol, 2016, 17(1):163. |
[19] | Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota[J]. Science, 2012, 338(6103):120-123. |
[20] | He Z, Gharaibeh RZ, Newsome RC, et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin[J]. Gut, 2019, 68(2):289-300. |
[21] | Attene-Ramos MS, Wagner ED, Plewa MJ, et al. Evidence that hydrogen sulfide is a genotoxic agent[J]. Mol Cancer Res, 2006, 4(1):9-14. |
[22] | Huycke MM, Gaskins HR. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models[J]. Exp Biol Med (Maywood), 2004, 229(7):586-597. |
[23] | Münger K, Baldwin A, Edwards KM, et al. Mechanisms of human papillomavirus-induced oncogenesis[J]. J Virol, 2004, 78(21):11451-11460. |
[24] | Miyoshi J, Chang EB. The gut microbiota and inflammatory bowel diseases[J]. Transl Res, 2017, 179:38-48. |
[25] | Aran D, Lasry A, Zinger A, et al. Widespread parainflammation in human cancer[J]. Genome Biol, 2016, 17(1):145. |
[26] | Pagano JS, Blaser M, Buendia MA, et al. Infectious agents and cancer: criteria for a causal relation[J]. Semin Cancer Biol, 2004, 14(6):453-471. |
[27] | Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host Microbe, 2013, 14(2):207-215. |
[28] | Wu S, Rhee KJ, Zhang M, et al. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage[J]. J Cell Sci, 2007, 120(Pt 11):1944-1952. |
[29] | Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2):195-206. |
[30] | Wang K, Wang J, Wei F, et al. Expression of TLR4 in Non-Small Cell Lung Cancer Is Associated with PD-L1 and Poor Prognosis in Patients Receiving Pulmonectomy[J]. Front Immunol, 2017, 8:456. |
[31] | Adolph TE, Tomczak MF, Niederreiter L, et al. Paneth cells as a site of origin for intestinal inflammation[J]. Nature, 2013, 503(7475):272-276. |
[32] | Herfs M, Hubert P, Delvenne P. Epithelial metaplasia: adult stem cell reprogramming and (pre)neoplastic transformation mediated by inflammation?[J]. Trends Mol Med, 2009, 15(6):245-253. |
[33] | Ali T, Kaitha S, Mahmood S, et al. Clinical use of anti-TNF therapy and increased risk of infections[J]. Drug Healthc Patient Saf, 2013, 5:79-99. |
[34] | Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible coli-tis and colorectal cancer[J]. J Clin Invest, 2013, 123(2):700-711. |
[35] | Levy M, Thaiss CA, Zeevi D, et al. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling[J]. Cell, 2015, 163(6):1428-1443. |
[36] | Wynendaele E, Verbeke F, D'Hondt M, et al. Crosstalk between the microbiome and cancer cells by quorum sensing peptides[J]. Peptides, 2015, 64:40-48. |
[37] | García-Castillo V, Sanhueza E, McNerney E, et al. Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle[J]. J Med Microbiol, 2016, 65(12):1347-1362. |
[38] | Jungnickel C, Schmidt LH, Bittigkoffer L, et al. IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth[J]. Oncogene, 2017, 36(29):4182-4190. |
[39] | Jungnickel C, Wonnenberg B, Karabiber O, et al. Cigarette smoke-induced disruption of pulmonary barrier and bacterial translocation drive tumor-associated inflammation and growth[J]. Am J Physiol Lung Cell Mol Phy-siol, 2015, 309(6):L605-L613. |
[40] | Ochoa CE, Mirabolfathinejad SG, Ruiz VA, et al. Interleukin 6, but not T helper 2 cytokines, promotes lung carcinogenesis[J]. Cancer Prev Res (Phila), 2011, 4(1):51-64. |
[41] | Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system[J]. Science, 2012, 336(6086):1268-1273. |
[42] | Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371):91-97. |
[43] | Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2):344-355. |
[44] | Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses[J]. Nat Med, 2009, 15(9):1016-1022. |
[45] | Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145):569-573. |
[46] | Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504(7480):446-450. |
[47] | O'Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans[J]. Nat Commun, 2015, 6:6342. |
[48] | Chang SH, Mirabolfathinejad SG, Katta H, et al. T helper 17 cells play a critical pathogenic role in lung cancer[J]. Proc Natl Acad Sci U S A, 2014, 111(15):5664-5669. |
[49] | Cheng M, Qian L, Shen G, et al. Microbiota modulate tumoral immune surveillance in lung through a γδT17 immune cell-dependent mechanism[J]. Cancer Res, 2014, 74(15):4030-4041. |
[50] | Jin C, Lagoudas GK, Zhao C, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells[J]. Cell, 2019, 176(5):998-1013. |
[51] | Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086):1262-1267. |
[52] | O'Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(12):691-706. |
[53] | Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome[J]. Nature, 2013, 499(7456):97-101. |
[54] | Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1):128-139. |
[55] | Elangovan S, Pathania R, Ramachandran S, et al. The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival[J]. Cancer Res. 2014, 74(4):1166-1178. |
[56] | Belcheva A, Irrazabal T, Robertson SJ, et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells[J]. Cell, 2014, 158(2):288-299. |
[57] | Xiao X, Cao Y, Chen H. Profiling and characterization of microRNAs responding to sodium butyrate treatment in A549 cells[J]. J Cell Biochem, 2018, 119(4):3563-3573. |
[58] | Kim K, Kwon O, Ryu TY, et al. Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer[J]. Mol Med Rep, 2019, 20(2):1569-1574. |
[59] | Scott AJ, Alexander JL, Merrifield CA, et al. Internatio-nal Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis[J]. Gut, 2019, 68(9):1624-1632. |
/
〈 |
|
〉 |