Analysis of structural characteristics of gut microbiome in colitis mice based on 16S rRNA high-throughput sequencing
Received date: 2019-02-21
Online published: 2019-06-25
目的: 明确溃疡性结肠炎(ulcerative colitis,UC)与肠道菌群间的相互关系,为寻找简单、安全的UC治疗方法提供实验基础。方法: 通过3%硫酸葡聚糖钠(dextran sulfate sodium,DSS)诱导建立小鼠溃疡性结肠炎模型,观察检测体重变化、肠道病理改变,采用16S rRNA高通量测序技术,检测小鼠粪便中的肠道菌群,并分析比较结肠炎小鼠与正常小鼠间肠道菌群的多样性及丰度。同时,利用已有数据库,预估肠道菌群内的功能基因构成,分析2组间的菌群基因功能差异。结果: 溃疡性结肠炎小鼠体重明显减轻,且肠道上皮完整性被破坏,同时肠道菌群多样性明显降低,溃疡性肠炎组小鼠肠道内双歧杆菌属降至0.2%明显低于正常组小鼠(P<0.05),而乳酸杆菌属平均丰度也显著降低至2.9%(P<0.05),提示可能是通过影响机体代谢从而造成溃疡性结肠炎的发生、发展。结论: 溃疡性结肠炎小鼠的肠道菌群多样性降低,菌群分布均发生显著改变。
关键词: 溃疡性结肠炎; 肠道菌群; 16S rRNA高通量测序
汪婷婷, 郑乃盛, 袁向亮, 沈立松 . 基于16S rRNA高通量测序技术分析小鼠实验性结肠炎肠道菌群结构特征[J]. 诊断学理论与实践, 2019 , 18(03) : 263 -270 . DOI: 10.16150/j.1671-2870.2019.03.005
Objective: To clarify the interrelationship between ulcerative colitis (UC ) and gut microbiome for providing an experimental basis to find a simple and safe treatment for patients with ulcerative colitis. Methods: A model of ulcerative colitis in mice was established by 3% DSS (dextran sulfate sodium), and the body weight and intestinal pathological changes of the model mice were detected. The diversity and differences of gut microbiome in feces of ulcerative colitis mice and normal mice were identified by 16S rRNA high-throughput sequencing technology. The existing gene database was used to estimate the functional gene composition of the intestinal flora and the functional differences between the two groups. Results: The results of comparative analysis showed that the weight of ulcerative colitis mice was significantly reduced, the integrity of intestinal epithelium was destroyed, and the diversity of gut microbiome was significantly reduced. Bifidobacterium in intestinal tract of ulcerative colitis mice decreased to 0.2%, which was significantly lower than that of mice in control group (P<0.05); and the relative abundance of Lactobacillus also decreased to 2.9% (P<0.05), which denoted that ulcerative colitis might be caused by its influence on metabolism of the body. Conclusions: The diversity and distribution of gut microbiome in ulcerative colitis mice have changed significantly.
[1] | 张琴, 吴开春. 中国炎症性肠病癌变监测[J]. 医学新知, 2016, 26(4):235-237. |
[2] | Weisshof R, El Jurdi K, Zmeter N, et al. Emerging Thera-pies for Inflammatory Bowel Disease[J]. Adv Ther, 2018, 35(11):1746-1762. |
[3] | 李军祥, 谭祥, 毛堂友. 溃疡性结肠炎中西医结合治疗策略[J]. 中国中西医结合杂志, 2017, 37(4):398-400. |
[4] | de Souza HSP, Fiocchi C, Iliopoulos D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(12):739-749. |
[5] | 毛钰蕾, 周涛, 唐凌云, 等. 速激肽受体2对小鼠溃疡性结肠炎的影响[J]. 诊断学理论与实践, 2016, 15(6):578-581. |
[6] | 郭晗, 张捷, 杨硕, 等. 肠道微生物与人类疾病关系的研究进展[J]. 检验医学, 2017, 32(12):1165-1172. |
[7] | Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways[J]. PLoS One, 2010, 5(1):e8578. |
[8] | Rosenbaum JT, Asquith MJ. The Microbiome: a Revolution in Treatment for Rheumatic Diseases?[J]. Curr Rheumatol Rep, 2016, 18(10):62. |
[9] | Knip M, Honkanen J. Modulation of type 1 diabetes risk by the intestinal microbiome[J]. Curr Diab Rep, 2017, 17(11):105. |
[10] | Halfvarson J, Brislawn CJ, Lamendella R, et al. Dyna-mics of the human gut microbiome in inflammatory bowel disease[J]. Nat Microbiol, 2017, 2:17004. |
[11] | Aleksandrova K, Romero-Mosquera B, Hernandez V. Diet, gut microbiome and epigenetics: emerging links with inflammatory bowel diseases and prospects for mana-gement and prevention[J]. Nutrients, 2017, 9(9),pii:E962. |
[12] | Lamas B, Richard ML, Leducq V et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands[J]. Nat Med, 2016, 22(6):598-605. |
[13] | Dheer R, Santaolalla R, Davies JM, et al. Intestinal epi-thelial toll-like receptor 4 signaling affects epithelial function and colonic microbiota and promotes a risk for transmissible colitis[J]. Infect Immun, 2016, 84(3):798-810. |
[14] | Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-regu-lating Expression of MicroRNA-21[J]. Gastroenterology, 2017, 152(4):851-866. |
[15] | de Weirdt R, Crabbé A, Roos S, et al. Glycerol supplementation enhances L. reuteri's protective effect against S. Typhimurium colonization in a 3-D model of colonic epithelium[J]. PLoS One, 2012, 7(5):e37116. |
[16] | 余今菁, 李欢, 胡邱宇, 等. 基于高通量测序技术的溃疡性结肠炎患者肠道菌群多样性研究[J]. 华中科技大学学报(医学版), 2018, 47(4):460-465. |
[17] | 姜洋, 赵秋枫, 王实, 等. 基于16S rRNA序列分析肠道菌群失调与溃疡性结肠炎的相关性[J]. 世界华人消化杂志, 2017, 25(36):3191-3202. |
[18] | Nunes NS, Kim S, Sundby M, et al. Temporal clinical, proteomic, histological and cellular immune responses of dextran sulfate sodium-induced acute colitis[J]. World J Gastroenterol, 2018, 24(38):4341-4355. |
[19] | Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J]. Nat Commun, 2013, 4:1829. |
[20] | 杜彩贺, 胡芳, 魏婷婷, 等. PCR-DGGE指纹图谱技术分析2型糖尿病模型小鼠胃微生物菌群结构[J]. 中国生物工程杂志, 2012, 32(3):25-31. |
[21] | Säemann MD, Böhmig GA, Osterreicher CH, et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production[J]. FASEB J, 2000, 14(15):2380-2382. |
[22] | Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands[J]. Nat Med, 2016, 22(6):598-605. |
[23] | Ott SJ, Musfeldt M, Wenderoth DF, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disea-se[J]. Gut, 2004, 53(5):685-693. |
[24] | 任科雨, 勇春明, 王艳婷, 等. 实验性结肠炎小鼠肠道菌群指纹图谱分析[J]. 胃肠病学和肝病学杂志, 2013, 22(9):894-897. |
[25] | Damman CJ, Miller SI, Surawicz CM, et al. The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation?[J]. Am J Gastroenterol, 2012, 107(10):1452-1459. |
[26] | Oberg TS, Ward RE, Steele JL, et al. Genetic and physiological responses of Bifidobacterium animalis subsp. lactis to hydrogen peroxide stress[J]. J Bacteriol, 2013, 195(16):3743-3751. |
[27] | LeBlanc JG, Milani C, de Giori GS, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective[J]. Curr Opin Biotechnol, 2013, 24(2):160-168. |
[28] | Aoki R, Kamikado K, Suda W, et al. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation[J]. Sci Rep, 2017, 7:43522. |
[29] | Kołodziej M, Szajewska H. Lactobacillus reuteri DSM 17938 in the prevention of antibiotic-associated diarrhoea in children: protocol of a randomised controlled trial[J]. BMJ Open, 2017, 7(1):e013928. |
[30] | de Weirdt R, Crabbé A, Roos S, et al. Glycerol supplementation enhances L. reuteri's protective effect against S. Typhimurium colonization in a 3-D model of colonic epithelium[J]. PLoS One, 2012, 7(5):e37116. |
[31] | Bertin Y, Habouzit C, Dunière L, et al. Lactobacillus reuteri suppresses E. coli O157:H7 in bovine ruminal fluid: Toward a pre-slaughter strategy to improve food safety?[J]. PLoS One, 2017, 12(11):e0187229. |
[32] | 彭玄杰. 双歧杆菌三联活菌联合美沙拉嗪治疗溃疡性结肠炎的临床疗效分析[J]. 中国中西医结合消化杂志, 2014, 22(11):672-673. |
[33] | 梁涛. 乳酸乳杆菌对溃疡性结肠炎患者辅助治疗作用及相关机制研究[J]. 中国医院药学杂志, 2015, 35(11):1018-1022. |
[34] | Ihara S, Hirata Y, Koike K. TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota[J]. J Gastroenterol, 2017, 52(7):777-787. |
[35] | Ramakrishnan SK, Zhang H, Ma X, et al. Intestinal non-canonical NFκB signaling shapes the local and systemic immune response[J]. Nat Commun, 2019, 10(1):660. |
[36] | Lavoie S, Conway KL, Lassen KG, et al. The Crohn's disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response[J]. Elife, 2019, 8(pii):e39982. |
[37] | Shen W, Shen M, Zhao X, et al. Anti-obesity Effect of Capsaicin in Mice Fed with High-Fat Diet Is Associated with an Increase in Population of the Gut Bacterium Akkermansia muciniphila[J]. Front Microbiol, 2017, 8:272. |
[38] | Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778):1355-1359. |
[39] | Ahmed J, Reddy BS, Mølbak L, et al. Impact of probio-tics on colonic microflora in patients with colitis: a prospective double blind randomised crossover study[J]. Int J Surg, 2013, 11(10):1131-1136. |
[40] | 陈迪, 陈敏, 张玉洁, 等. 疑似溃疡性结肠炎的药物诱导性肠炎[J]. 中华消化杂志, 2017, 37(3):197-200. |
/
〈 |
|
〉 |