[1] Petersen RC.Mild cognitive impairment: transition between aging and Alzheimer′s disease[J]. Neurologia,2000, 15(3):93-101.
[2] Zang Y, Jiang T, Lu Y, et al.Regional homogeneity approach to fMRI data analysis[J]. Neuroimage,2004,22(1):394-400.
[3] Wang Y, Zhao X, Xu S, et al.Using regional homoge-neity to reveal altered spontaneous activity in patients with mild cognitive impairment[J]. Biomed Res Int,2015,2015:807093.
[4] Zang YF, He Y, Zhu CZ, et al.Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev,2007,29(2):83-91.
[5] Cai S, Chong T, Peng Y, et al. Altered functional brain networks in amnestic mild cognitive impairment: a resting-state fMRI study[J/OL]. Brain ImagingBehav,2016-05-14[2017-04-07]. https://www.ncbi.nlm.nih.gov/pubmed/26972578.
[6] Ni L, Liu R, Yin Z, et al.Aberrant spontaneous brain activity in patients with mild cognitive impairment and concomitant lacunar infarction: A resting-state functional MRI study[J]. J Alzheimers Dis,2016,50(4):1243-1254.
[7] Jia B, Liu Z, Min B, et al.The effects of acupuncture at real or sham acupoints on the intrinsic brain activity in mild cognitive impairment patients[J]. Evid Based Complement Alternat Med,2015,2015:529675.
[8] Cha J, Hwang JM, Jo HJ, et al.Assessment of functional characteristics of amnestic mild cognitive impairment and Alzheimer's disease using various methods of resting-state fMRI analysis[J]. Biomed Res Int,2015,2015:907464.
[9] Liang P, Xiang J, Liang H, et al.Altered amplitude of low-frequency fluctuations in early and late mild cognitive impairment and Alzheimer's disease[J]. Curr Alzheimer Res,2014,11(4):389-398.
[10] Xi Q, Zhao X, Wang P, et al.Spontaneous brain activity in mild cognitive impairment revealed by amplitude of low-frequency fluctuation analysis: a resting-state fMRI study[J]. Radiol Med,2012,117(5):865-871.
[11] Pan P, Zhu L, Yu T, et al.Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: A meta-analysis of resting-state fMRI studies[J]. AAgeing Res Rev,2017,35:12-21.
[12] Wang J, Zuo X, Dai Z, et al.Disrupted functional brain connectome in individuals at risk for Alzheimer's disease[J]. Biol Psychiatry,2013,73(5):472-481.
[13] Bai L, Zhang M, Chen S, et al.Characterizing acupuncture de qi in mild cognitive impairment: relations with small-world efficiency of functional brain networks[J]. Evid Based Complement Alternat Med,2013,2013:304804.
[14] 王湘彬, 赵小虎, 江虹, 等. 轻度认知功能障碍患者大脑fMRI网络小世界特性[J]. 中国医学影像技术,2014, 30(5):113-116.
[15] Liu Z, Zhang Y, Yan H, et al.Altered topological patterns of brain networks in mild cognitive impairment and Alzheimer's disease: a resting-state fMRI study[J]. Psychiatry Res,2012,202(2):118-125.
[16] Liu Y, Yu C, Zhang X, et al.Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease[J]. Cereb Cortex,2014,24(6):1422-1435.
[17] Ding B, Chen KM, Ling HW, et al.Diffusion tensor imaging correlates with proton magnetic resonance spectroscopy in posterior cingulate region of patients with Alzheimer's disease[J]. Dement Geriatr Cogn Disord,2008, 25(3):218-225.
[18] Cho H, Yang DW, Shon YM, et al.Abnormal integrity of corticocortical tracts in mild cognitive impairment: a diffusion tensor imaging study[J]. J Korean Med Sci,2008, 23(3):477-483.
[19] Mielke MM, Okonkwo OC, Oishi K, et al.Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer's disease[J]. Alzheimers Dement,2012,8(2):105-113.
[20] Shu N, Liang Y, Li H, et al.Disrupted topological organization in white matter structural networks in amnestic mild cognitive impairment: relationship to subtype[J]. Radiology,2012,265(2):518-527.
[21] Bai F, Shu N, Yuan Y, et al.Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment[J]. J Neurosci,2012,32(12):4307-4318.
[22] Kantarci K, Jack CR Jr, Xu YC, et al.Mild cognitive impairment and Alzheimer disease: regional diffusivity of water[J]. Radiology,2001,219(1):101-107.
[23] Modrego PJ, Fayed N, Pina MA.Conversion from mild cognitive impairment to probable Alzheimer's disease predicted by brain magnetic resonance spectroscopy[J]. Am J Psychiatry,2005,162(4):667-675.
[24] Foy CM, Daly EM, Glover A, et al.Hippocampal proton MR spectroscopy in early Alzheimer's disease and mild cognitive impairment[J]. Brain Topogr,2011,24(3-4):316-322.
[25] Kantarci K, Weigand SD, Przybelski SA, et al.MRI and MRS predictors of mild cognitive impairment in a population-based sample[J]. Neurology,2013,81(2):126-133.
[26] Kantarci K, Petersen RC, Przybelski SA, et al.Hippocampal volumes, proton magnetic resonance spectroscopy metabolites, and cerebrovascular disease in mild cognitive impairment subtypes[J]. Arch Neurol,2008,65(12):1621-1628.
[27] Huang W, Alexander GE, Chang L, et al.Brain metabolite concentration and dementia severity in Alzheimer's disease: a (1)H MRS study[J]. Neurology,2001,57(4):626-632.
[28] Kantarci K, Jack CR Jr, Xu YC, et al.Regional metabo-lic patterns in mild cognitive impairment and Alzheimer's disease: A 1H MRS study[J]. Neurology,2000,55(2):210-217.
[29] Catani M, Cherubini A, Howard R, et al.(1)H-MR spectroscopy differentiates mild cognitive impairment from normal brain aging[J]. Neuroreport,2001,12(11):2315-2317.
[30] Wang Z, Zhao C, Yu L, et al.Regional metabolic changes in the hippocampus and posterior cingulate area detected with 3-Tesla magnetic resonance spectroscopy in patients with mild cognitive impairment and Alzheimer disease[J]. Acta Radiol,2009,50(3):312-319.
[31] 姚建莉, 曹震, 吴仁华. 氢质子磁共振频谱在阿尔茨海默病的应用研究进展[J]. 汕头大学医学报,2009,22(4):247-250.
[32] Godbolt AK, Waldman AD, MacManus DG, et al. MRS shows abnormalities before symptoms in familial Alzheimer disease[J]. Neurology,2006,66(5):718-22.
[33] Fayed N, Dávila J, Oliveros A Jr, et al.Correlation of findings in advanced MR techniques with global severity scales in patients with some grade of cognitive impairment[J]. Neurol Res,2010,32(2):157-165.
[34] Grade M, Hernandez Tamames JA, Pizzini FB, et al.A neuroradiologist's guide to arterial spin labeling MRI in clinical practice[J]. Neuroradiology,2015,57(12):1181-1202.
[35] Zlokovic BV.Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders[J]. Nat Rev Neurosci,2011,12(12):723-738.
[36] Johnson NA, Jahng GH, Weiner MW, et al.Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience[J]. Radiology,2005,234(3):851-859.
[37] Wang Z, Das SR, Xie SX, et al.Arterial spin labeled MRI in prodromal Alzheimer's disease: A multi-site study[J]. Neuroimage Clin,2013,2:630-636.
[38] Binnewijzend MA, Kuijer JP, Benedictus MR, et al.Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity[J]. Radiology,2013,267(1):221-230.
[39] Dai W, Lopez OL, Carmichael OT, et al.Mild cognitive impairment and alzheimer disease: patterns of altered cerebral blood flow at MR imaging[J]. Radiology,2009, 250(3):856-866.
[40] Alsop DC, Casement M, de Bazelaire C, et al. Hippocampal hyperperfusion in Alzheimer's disease[J]. Neuroimage,2008,42(4):1267-1274.
[41] Bangen KJ, Restom K, Liu TT, et al.Assessment of Alzheimer's disease risk with functional magnetic resonance imaging: an arterial spin labeling study[J]. J Alzheimers Dis,2012,31(Suppl 3):S59-S74.
[42] Westerberg C, Mayes A, Florczak SM, et al.Distinct medial temporal contributions to different forms of recognition in amnestic mild cognitive impairment and Alzheimer's disease[J]. Neuropsychologia,2013,51(12):2450-2461.
[43] Chao LL, Buckley ST, Kornak J, et al.ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia[J]. Alzheimer Dis Assoc Disord,2010,24(1):19-27.
[44] Mattsson N, Tosun D, Insel PS, et al.Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment[J]. Brain,2014,137(Pt 5):1550-1561.
[45] Michels L, Warnock G, Buck A, et al.Arterial spin labe-ling imaging reveals widespread and Aβ-independent reductions in cerebral blood flow in elderly apolipoprotein epsilon-4 carriers[J]. J Cereb Blood Flow Metab,2016,36(3):581-595.