酸性亮氨酸核磷酸蛋白32B 在肝癌组织表达增强并促进肝癌细胞生长的研究
收稿日期: 2019-01-07
网络出版日期: 2019-04-25
基金资助
国家自然科学基金(81772936)
Study on ANP32B expression in hepatocellular carcinoma and its significance
Received date: 2019-01-07
Online published: 2019-04-25
目的:检测酸性亮氨酸核磷酸蛋白32B(acidic leucine-rich nuclear phosphoprotein 32B,ANP32B)在肝细胞肝癌组织中的表达水平,并探讨其在肝癌细胞生长中的作用。方法:利用国际权威公共数据库,分析肝细胞肝癌组织中ANP32B mRNA的表达及其与患者生存期间的关系;用蛋白免疫印迹法检测患者肝癌组织样本和敲除ANP32B的肝癌细胞系中的ANP32B蛋白表达水平;并用RNA干扰技术在肝癌细胞系中沉默ANP32B的表达,通过计数检测细胞生长及克隆形成,用流式细胞仪检测其细胞周期和细胞凋亡。结果:通过数据库及肝癌组织样本分析发现,肝癌组织中的ANP32B mRNA表达值(9.763±0.04)相较于癌旁组织(9.293±0.03)明显升高,蛋白表达升高1.78倍,且ANP32B高表达的肝癌患者与ANP32B低表达的患者相比,5年总生存率明显下降,差异有统计学意义(P<0.01)。体外实验发现,2组敲除ANP32B的肝癌细胞和对照组肝癌细胞相比,细胞生长速度明显减慢(29.9±105比23.2±105,15.5±105),克隆形成数目减少(300个比146个比135个),细胞周期发生S期阻滞(47.9%比61.5%比57.1%),细胞凋亡数略有增加(1.8%比7.3%比4.9%)。结论:ANP32B在肝癌组织中高表达,在肝癌细胞系中沉默ANP32B表达后可明显抑制细胞生长,细胞周期发生阻滞,细胞凋亡增加。
关键词: 酸性亮氨酸核磷酸蛋白32B; 肝癌; 细胞生长
朱迪, 朱晓娜, 杨烁, 何平, 沈少明, 余韵 . 酸性亮氨酸核磷酸蛋白32B 在肝癌组织表达增强并促进肝癌细胞生长的研究[J]. 诊断学理论与实践, 2019 , 18(2) : 170 -176 . DOI: 10.16150/j.1671-2870.2019.02.010
Objective: To investigate the ANP32B (acidic leucine-rich nuclear phosphoprotein 32B)expression in hepatocellular carcinoma and determine its clinical significance. Methods: The mRNA expression of ANP32B in hepatocellular carcinoma and the overall survival were analyzed using international public datasets. The protein expression of ANP32B in hepatocellular carcinoma tissue was detected by immunoblotting. ANP32B was knockdown by shRNA in HCC cell lines, and cell growth and colony formation were analyzed; cell cycle and apoptosis were detected by flow cytometry. Results: ANP32B mRNA and protein level were highly expressed in hepatocellular carcinoma, and the higher ANP32B mRNA level was associated with shorter survival. Knockdown of ANP32B in HCC cell lines inhibited cell growth and colony formation, induced cell cycle arrest and cell apoptosis. Conclusions: ANP32B is highly expressed in hepatocellular carcinoma. Knockdown of ANP32B in HCC cell lines inhibited cell growth and colony formation, induced cell cycle arrest and cell apoptosis.
[1] | Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2):87-108. |
[2] | Reilly PT, Yu Y, Hamiche A, et al. Cracking the ANP 32 whips: important functions, unequal requirement, and hints at disease implications[J]. Bioessays, 2014, 36(11):1062-1071. |
[3] | Matilla A, Radrizzani M. The Anp32 family of proteins containing leucine-rich repeats[J]. Cerebellum. 2005; 4(1):7-18. |
[4] | Seo SB, McNamara P, Heo S, et al. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein[J]. Cell, 2001, 104(1):119-130. |
[5] | Obri A, Ouararhni K, Papin C, et al. ANP32E is a histone chaperone that removes H2A.Z from chromatin[J]. Nature, 2014, 505(7485):648-653. |
[6] | Habrukowich C, Han DK, Le A, et al. Sphingosine inte-raction with acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) regulates PP2A activity and cyclooxygenase (COX)-2 expression in human endothelial cells[J]. J Biol Chem, 2010, 285(35):26825-26831. |
[7] | Katayose Y, Li M, Al-Murrani SW, et al. Protein phosphatase 2A inhibitors, I(1)(PP2A) and I(2)(PP2A), asso-ciate with and modify the substrate specificity of protein phosphatase 1[J]. J Biol Chem, 2000, 275(13):9209-9214. |
[8] | Fries B, Heukeshoven J, Hauber I, et al. Analysis of nucleocytoplasmic trafficking of the HuR ligand APRIL and its influence on CD83 expression[J]. J Biol Chem, 2007, 282(7):4504-4515. |
[9] | Moore MJ, Rosbash M. Cell biology. TAPping into mRNA export[J]. Science, 2001, 294(5548):1841-1842. |
[10] | Reilly PT, Afzal S, Gorrini C, et al. Acidic nuclear phosphoprotein 32kDa (ANP32) B-deficient mouse reveals a hierarchy of ANP32 importance in mammalian development[J]. Proc Natl Acad Sci U S A, 2011, 108(25):10243-10248. |
[11] | Yu Y, Wang LS, Shen SM, et al. Subcellular proteome analysis of camptothecin analogue NSC606985-treated acute myeloid leukemic cells[J]. J Proteome Res, 2007, 6(9):3808-3818. |
[12] | Yu Y, Shen SM, Zhang FF, et al. Acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) contributes to retinoic acid-induced differentiation of leukemic cells[J]. Biochem Biophys Res Commun, 2012, 423(4):721-725. |
[13] | Shen SM, Yu Y, Wu YL, et al. Downregulation of ANP32B, a novel substrate of caspase-3, enhances caspase-3 activation and apoptosis induction in myeloid leukemic cells[J]. Carcinogenesis, 2010, 31(3):419-426. |
[14] | Yang S, Zhou L, Reilly PT, et al. ANP32B deficiency impairs proliferation and suppresses tumor progression by regulating AKT phosphorylation[J]. Cell Death Dis, 2016, 7:e2082. |
[15] | Pan W, da Graca LS, Shao Y, et al. PHAPI/pp 32 suppresses tumorigenesis by stimulating apoptosis[J]. J Biol Chem, 2009, 284(11):6946-6954. |
[16] | Chen TH, Brody JR, Romantsev FE, et al. Structure of pp32, an acidic nuclear protein which inhibits oncogene-induced formation of transformed foci[J]. Mol Biol Cell, 1996, 7(12):2045-2056. |
[17] | Kadkol SS, Brody JR, Pevsner J, et al. Modulation of oncogenic potential by alternative gene use in human prostate cancer[J]. Nat Med, 1999, 5(3):275-279. |
[18] | Kadkol SS, El Naga GA, Brody JR, et al. Expression of pp 32 gene family members in breast cancer[J]. Breast Cancer Res Treat, 2001, 68(1):65-73. |
[19] | Zhu BD, Li XL, Liu Y, et al. Involvement of hepatopoie-tin Cn in the development of human hepatocellular car-cinoma[J]. Clin Exp Metastasis, 2010, 27(8):571-580. |
[20] | Tsukamoto Y, Uchida T, Karnan S, et al. Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer[J]. J Pathol, 2008, 216(4):471-482. |
[21] | Björck E, Ek S, Landgren O, et al. High expression of cyclin B1 predicts a favorable outcome in patients with follicular lymphoma[J]. Blood, 2005, 105(7):2908-2915. |
[22] | Ohno Y, Koizumi M, Nakayama H, et al. Downregulation of ANP32B exerts anti-apoptotic effects in hepatocellular carcinoma[J]. PLoS One, 2017, 12(5):e0177343. |
[23] | Tochio N, Umehara T, Munemasa Y, et al. Solution structure of histone chaperone ANP32B: interaction with core histones H3-H4 through its acidic concave domain[J]. J Mol Biol, 2010, 401(1):97-114. |
[24] | Munemasa Y, Suzuki T, Aizawa K, et al. Promoter region-specific histone incorporation by the novel histone chaperone ANP32B and DNA-binding factor KLF5[J]. Mol Cell Biol, 2008, 28(3):1171-1181. |
/
〈 |
|
〉 |