论著

ASP2215联合SAHA对FLT3-ITD突变细胞株体外协同机制研究

展开
  • 上海交通大学医学院附属仁济医院血液科,上海 200127

收稿日期: 2018-08-25

  网络出版日期: 2018-10-25

基金资助

国家自然科学基金面上项目(81470312)

Study on mechanism of synergistic effect of ASP2215 combined with SAHA on FLT3-ITD mutant cell line

Expand
  • Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China

Received date: 2018-08-25

  Online published: 2018-10-25

摘要

目的:探究FLT3急性髓细胞性白血病(acute myeloid leukemia, AML)抑制剂ASP2215联合组蛋白去乙酰化酶(histone deacetylase inhibitor,HDAC)抑制剂SAHA,对伴FLT3-ITD突变的细胞株MV4-11的协同作用及其作用机制。方法:用不同浓度的ASP2215、SAHA单药或两药联合处理白血病细胞株MV4-11,观察细胞形态变化,采用CCK-8试剂盒检测其细胞活力,用流式细胞仪检测细胞凋亡率,蛋白免疫印迹检测FLT3及下游信号分子STAT5的磷酸化,分析凋亡调控蛋白Mcl-1、Bcl-xL、Bcl-2、Bax和caspase-9、caspase-3的蛋白含量。结果:①相较于FLT3野生型细胞株THP-1,ASP2215能够特异性地抑制FLT3-ITD突变AML细胞株MV4-11细胞的增殖。②ASP2215和SAHA单药处理均能抑制MV4-11细胞的活性,这种抑制作用呈浓度和时间依赖性,且两药联合使用时能够协同抑制MV4-11细胞株的活性,不同药物浓度联合的联合指数(combination index,CI)值皆小于1。③ASP2215和SAHA呈浓度和时间依赖性诱导MV4-11细胞凋亡,两者联合能够进一步增加MV4-11细胞凋亡。MV4-11细胞凋亡的过程中,伴caspase-3和caspase-9蛋白剪切活化,且活化程度随细胞凋亡增加而上升。相较于单药作用,两药联合能够引起更多的caspase-3和caspase-9剪切活化。形态学上,细胞凋亡和坏死改变随着药物浓度增加依次增多,且两药物联合能够引起细胞更明显的凋亡和坏死改变。④FLT3抑制剂ASP2215能够降低FLT3受体及下游分子STAT5的磷酸化水平,SAHA对FLT3及下游STAT5分子磷酸化也有轻度抑制作用。ASP2215和SAHA都能引起Mcl-1和Bcl-xL抗凋亡蛋白水平的降低,轻度下调Bcl-2蛋白和轻度上调Bax蛋白表达水平。两药联合相较于单药能够进一步下调Mcl-1、Bcl-xL的蛋白表达水平和Bcl-2/Bax蛋白比例。结论:ASP2215联合SAHA能够协同抑制伴FLT3-ITD突变MV4-11细胞株增殖,促进细胞凋亡,其机制涉及两药对FLT3-STAT5通路不同程度抑制作用,以及对凋亡相关蛋白Mcl-1、Bcl-xL及Bcl-2/Bax蛋白比例的调控。

本文引用格式

朱庆锋, 胡晓丽, 朱坚轶, 郎雯竞, 钟济华, 陈芳源 . ASP2215联合SAHA对FLT3-ITD突变细胞株体外协同机制研究[J]. 诊断学理论与实践, 2018 , 17(05) : 538 -546 . DOI: 10.16150/j.1671-2870.2018.05.011

Abstract

Objective: To study the synergistic effect and mechanism of FLT3 inhibitor ASP2215 combined with HDAC inhibitor SAHA on FLT3-ITD mutated cell line MV4-11. Methods: MV4-11cells were treated with ASP2215, SAHA or ASP2215 combined with SAHA at different concentrations, and then cell morphological changes were observed, cell viability was detected by CCK-8 method and apoptosis rate measured by flow cytometry. Phosphorylation of FLT3 and downstream signaling molecule STAT5, as well as the levels of apoptosis regulated proteins Mcl-1, Bcl-xL, Bcl-2, Baxand Caspase-9/3 were detected by Western blot. Results: ① Compared with wild-type FLT3 cell line THP-1, ASP2215 could specifically inhibit the proliferation of FLT3-ITD mutated AML cell line MV4-11. ② ASP2215 or SAHA alone could inhibit the viability of MV4-11 cells in a dose and time dependent manner. Moreover, the combination of the two drugs could synergistically inhibit the viability of MV4-11cells, and the CI values of combination of the two drugs at different concentrationswere all less than 1. ③ASP2215 or SAHA alone could induce apoptosis of MV4-11 cells in a dose and time dependent manner, and there was a synergistic effect for the two drugs combined to induce apoptosis of MV4-11 cells. Apoptosis was accompanied by cleaved activation of caspase-3 and caspase-9. Combination of the two drugs caused more cleaved activation of caspase-3 and caspase-9 than the effect of single-drug. Morphologically, the changes of apoptosis and necrosis increased with the increase of drug concentration, and combination of the two drugs could lead to more obvious cell apoptosis and necrosis changes. ④The FLT3 inhibitor ASP2215 could reduce the phosphorylation level of FLT3 receptor and the downstream molecule STAT5, and SAHA also had a slight inhibitory effect on the phosphorylation of FLT3 and the downstream molecule STAT5. Both ASP2215 and SAHA induced a decrease in McL-1 and Bcl-xL anti-apoptotic proteins, with a slight down-regulation of Bcl-2 protein and a slight up-regulation of Bax protein expression. Combination of the two drugs further reduced the Mcl-1, Bcl-xL expression level and Bcl-2/Bax protein ratio when compared with the effect of single-drug. Conclusions: ASP2215 combined with SAHA can synergistically inhibit the proliferation and enhance the apoptosis of MV4-11 cell line with FLT3-ITD mutation. The mechanism involves the inhibition of FLT3-STAT5 pathway and the regulation of apoptosis-related proteins Mcl-1, Bcl-xL and Bcl-2/Bax protein ratio.

参考文献

[1] Döhner H, Weisdorf DJ, Bloomfield CD.Acute Myeloid Leukemia[J]. N Engl J Med,2015,373(12):1136-1152.
[2] Lagunas-Rangel FA, Chávez-Valencia V.FLT3-ITD and its current role in acute myeloid leukaemia[J]. Med Oncol,2017,34(6):114.
[3] Takahashi S.Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications[J]. J Hematol Oncol,2011,4:13.
[4] Smith CC, Wang Q, Chin CS, et al.Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia[J]. Nature,2012,485(7397):260-263.
[5] Lee LY, Hernandez D, Rajkhowa T, et al.Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor[J]. Blood,2017,129(2):257-260.
[6] Mori M, Kaneko N, Ueno Y, et al.Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia[J]. Invest New Drugs,2017,35(5):556-565.
[7] Perl AE, Altman JK, Cortes J, et al.Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study[J]. Lancet Oncol,2017,18(8):1061-1075.
[8] Lin WH, Yeh TK, Jiaang WT, et al.Evaluation of the antitumor effects of BPR1J-340, a potent and selective FLT3 inhibitor, alone or in combination with an HDAC inhibitor, vorinostat, in AML cancer[J]. PLoS One,2014, 9(1):e83160.
[9] Stahl M, Gore SD, Vey N, et al.Lost in translation? Ten years of development of histone deacetylase inhibitors in acute myeloid leukemia and myelodysplastic syndromes[J]. Expert Opin Investig Drugs,2016,25(3):307-317.
[10] Richon VM, Garcia-Vargas J, Hardwick JS.Development of vorinostat: current applications and future perspectives for cancer therapy[J]. Cancer Lett,2009,280(2):201-210.
[11] Siegel D, Hussein M, Belani C, et al.Vorinostat in solid and hematologic malignancies[J]. J Hematol Oncol,2009, 2:31.
[12] Zhou J, Bi C, Chng WJ, et al.PRL-3, a metastasis asso-ciated tyrosine phosphatase, is involved in FLT3-ITD signaling and implicated in anti-AML therapy[J]. PLoS One,2011,6(5):e19798.
[13] Choudhary C, Brandts C, Schwable J, et al.Activation mechanisms of STAT5 by oncogenic Flt3-ITD[J]. Blood,2007,110(1):370-374.
[14] Juen L, Brachet-Botineau M, Parmenon C, et al.New Inhibitor Targeting Signal Transducer and Activator of Transcription 5 (STAT5) Signaling in Myeloid Leukemias[J]. J Med Chem,2017,60(14):6119-6136.
[15] Nishioka C, Ikezoe T, Yang J, et al.MS-275, a novel histone deacetylase inhibitor with selectivity against HDAC1, induces degradation of FLT3 via inhibition of chaperone function of heat shock protein 90 in AML cells[J]. Leuk Res,2008,32(9):1382-1392.
[16] 王卫东, 陈正堂. Bcl-2/Bax比率与细胞“命运”[J]. 中国肿瘤生物治疗杂志,2007,14(4):393-396.
[17] Warr MR, Shore GC.Unique biology of Mcl-1: therapeutic opportunities in cancer[J]. Curr Mol Med,2008,8(2):138-147.
[18] Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S, et al.FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation[J]. Blood,2009,114(24):5034-5043.
[19] Rosato RR, Almenara JA, Kolla SS, et al.Mechanism and functional role of XIAP and Mcl-1 down-regulation in flavopiridol/vorinostat antileukemic interactions[J]. Mol Cancer Ther,2007,6(2):692-702.
[20] Gesbert F, Griffin JD.Bcr/Abl activates transcription of the Bcl-X gene through STAT5[J]. Blood,2000,96(6):2269-2276.
[21] Horita M, Andreu EJ, Benito A, et al.Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL[J]. J Exp Med,2000,191(6):977-984.
[22] Minami Y, Yamamoto K, Kiyoi H, et al.Different antiapoptotic pathways between wild-type and mutated FLT3: insights into therapeutic targets in leukemia[J]. Blood,2003,102(8):2969-2975.
文章导航

/