论著

下呼吸道流感嗜血杆菌定植对哮喘小鼠气道炎症的影响及信号通路的研究

展开
  • 1.上海交通大学医学院附属新华医院老年科,上海 200092
    2.上海市虹口四川北路街道社区卫生服务中心,上海 200080
    3.上海交通大学医学院医学检验系,上海 200025

收稿日期: 2019-05-09

  网络出版日期: 2020-02-25

基金资助

国家自然科学基金(81200017);上海市综合医院中西医结合专项(ZHYY-ZXYJHZX-2-201701);上海市科学技术委员会基金课题(18441905200);2019年上海交通大学“技术转移推广项目”(ZT201903)

Effect of Haemophilus influenzae colonizing lower respiratory tract on airway inflammation and its signaling pathway in asthmatic mice

Expand
  • 1. Geriatrics Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
    2. Shanghai Hongkou Sichuan North Road Sub District Community Health Service Center, Shanghai 200080, China
    3. Clinical Laboratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Received date: 2019-05-09

  Online published: 2020-02-25

摘要

目的:观察下呼吸道流感嗜血杆菌定植对哮喘小鼠气道炎症的影响,并研究其信号通路。方法:采用C57/B6和TLR4-/-小鼠,分别用卵清蛋白(ovalbumin,OVA)致敏和激发制备慢性哮喘小鼠模型,用流感嗜血杆菌琼脂菌珠制作气道定植模型(注菌组为2组,注菌后第7天和第21天组),同时设置对应时间(第7天和第21天)的0.9%NaCl溶液注射组及单纯流感定植组、单纯哮喘组,每种小鼠各8组,共16组。在哮喘小鼠气道注菌之后的第7、21天处死小鼠,检测血清中肿瘤坏死因子α(tumor necrosis factor α,TNF-α)含量,采用免疫组织化学法检测小鼠肺组织髓样分化因子88(myeloid differentiation factor 88, MyD88)和核因子κB(nuclear factor κB, NF-κB)的表达,并分别与相同时间的单纯流感定植及0.9%NaCl溶液注射、单纯哮喘对照小鼠相比较;再将C57/B6与TLR4-/-小鼠的实验结果进行比较,同时比较各组小鼠支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)中的细胞总数。结果:与相同时间的单纯流感定植及0.9%NaCl溶液注射的对照小鼠相比,有流感嗜血杆菌呼吸道定植的C57/B6和TLR4-/-哮喘小鼠血清中TNF-α含量、肺组织中MyD88和NF-κB的表达以及BALF中的细胞总数均升高(P均<0.05);与同时间对应组C57/B6小鼠相比,合并流感嗜血杆菌呼吸道定植的TLR4-/-哮喘小鼠血清中TNF-α含量、肺组织中MyD88和NF-κB的表达以及BALF中的细胞总数均降低P均<0.05)。结论:流感嗜血杆菌在下呼吸道定植可以通过激活TLR4-MyD88通路,促进转录因子NF-κB的表达,加重哮喘的气道炎症,这可能是哮喘发病的重要机制之一。

本文引用格式

康建强, 董杨阳, 杨玲, 宋珍, 范嘉盈 . 下呼吸道流感嗜血杆菌定植对哮喘小鼠气道炎症的影响及信号通路的研究[J]. 诊断学理论与实践, 2020 , 19(1) : 44 -49 . DOI: 10.16150/j.1671-2870.2020.01.010

Abstract

Objective: To observe the effect of Haemophilus influenzae colonizing lower respiratory tract on airway inflammation in asthmatic mice and study the related signaling pathway. Methods: Thirty-two C57/B6 mice were sensitized and challenged with ovalbumin (OVA) to establish a mice model of chronic asthma (AC group), and then half of them received intratracheal injection of Haemophilus influenza coated in agar beads to built a mice model of chronic asthma with airway Haemophilus influenza colonization (AS group). Besides, 16 C57/B6 mice were treated with intratracheal injection of Haemophilus influenza (NS group) and 16 C57/B6 mice received intratracheal injection of 0.9% NaCl (NC group). Sixty-four TLR4-/- mice were treated and grouped as C57/B6 mice. Mice including C57/B6 and TLR4-/- mice were sacrificed at 7 and 14 days after intratracheal injection, and serum tumor necrosis factor α(TNF-α) content, total number of cells in bronchoalveolar lavage fluid( BALF), and the expression of MyD88 and NF-κB in lung tissue were measured. The indice in AS group were compared with those in the control groups (AC, NS and NC) at corresponding time. Results: The serum level of TNF-α, total number of cells in BALF, and expression of MyD88 and NF-κB in lung tissue were higher in AS group than those in NC and NS group (both in C57/B6 mice and TLR4-/- mice). Compared with C57/B6 wild-type mice, TLR4-/- mice in AS group had lower levels of serum TNF-α, decreased numbers of cells in BALF, and down-regulated expression of MyD88 and NF-κB in lung tissue. Conclusions: Lower airway colonization with Haemophilus influenzae may aggravate airway inflammation of asthma by activating the TLR4-MyD88 pathway and promoting expression of NF-κB, which may be one of the important mechanisms of asthma.

参考文献

[1] Braun-Fahrländer C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children[J]. N Engl J Med,2002 Sep 19, 347(12):869-77.
[2] Bisgaard H, Hermansen MN, Buchvald F, et al. Childhood asthma after bacterial colonization of the airway in neonates[J]. N Engl J Med, 2007, 357(15):1487-1495.
[3] Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation[J]. Nat Immunol, 2008, 9(3):239-244.
[4] Iwakura Y, Nakae S, Saijo S, et al. The roles of IL-17A in inflammatory immune responses and host defense against pathogens[J]. Immunol Rev, 2008, 226:57-79.
[5] 陈杰华, 刘恩梅, 陈坤华, 等. 哮喘急性发作期患儿外周血Th17水平及其功能初步研究[J]. 细胞与分子免疫学杂志, 2009, 25(4):359-361,363.
[6] 康建强, 徐欣欣, 董杨阳, 等. 哮喘小鼠下呼吸道流感嗜血杆菌定植的研究[J]. 诊断学理论与实践, 2018, 17(1):102-107.
[7] 徐欣欣, 董杨阳, 杨玲, 等. 流感嗜血杆菌下气道定植对哮喘小鼠肺组织TH17细胞表达及气道重塑的影响[J]. 医学研究杂志, 2016, 45(10):24-30,47.
[8] Følsgaard NV, Schjørring S, Chawes BL, et al. Pathogenic bacteria colonizing the airways in asymptomatic neonates stimulates topical inflammatory mediator release[J]. Am J Respir Crit Care Med, 2013, 187(6):589-595.
[9] Sukkar MB, Xie S, Khorasani NM, et al. Toll-like receptor 2, 3, and 4 expression and function in human airway smooth muscle[J]. J Allergy Clin Immunol, 2006, 118(3):641-648.
[10] Tan AM, Chen HC, Pochard P, et al. TLR4 signaling in stromal cells is critical for the initiation of allergic Th2 responses to inhaled antigen[J]. J Immunol, 2010, 184(7):3535-3544.
[11] Hammad H, Chieppa M, Perros F, et al. House dust mite allergen induces asthma via Toll-like receptor 4 trigge-ring of airway structural cells[J]. Nat Med, 2009, 15(4):410-416.
[12] Kerkhof M, Postma DS, Brunekreef B, et al. Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma[J]. Thorax. 2010 Aug; 65(8):690-697.
[13] Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components[J]. Immunity, 1999, 11(4):443-451.
[14] Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway[J]. Science, 2003, 301(5633):640-643.
[15] Skerrett SJ, Wilson CB, Liggitt HD, et al. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa[J]. Am J Physiol Lung Cell Mol Physiol, 2007, 292(1):L312-L322.
[16] Huang C, Pan L, Lin F, et al. Monoclonal antibody against Toll-like receptor 4 attenuates ventilator-induced lung injury in rats by inhibiting MyD88- and NF-κB-dependent signaling[J]. Int J Mol Med, 2017, 39(3):693-700.
[17] Liu J, Chen Q, Jian Z, et al. Daphnetin protects against cerebral ischemia/reperfusion injury in mice via inhibition of TLR4/NF-κB signaling pathway[J]. Biomed Res Int, 2016, 2016:2816056.
[18] Andrews CS, Miyata M, Susuki-Miyata S, et al. Nontypeable haemophilus influenzae-induced MyD88 short expression is regulated by positive IKKβ and CREB pathways and negative ERK1/2 pathway[J]. PLoS One, 2015, 10(12):e0144840.
[19] Ciprandi G, Cirillo I, Vizzaccaro A. Mizolastine and fexofenadine modulate cytokine pattern after nasal allergen challenge[J]. Eur Ann Allergy Clin Immunol, 2004, 36(4):146-150.
[20] Matera MG, Calzetta L, Cazzola M. TNF-alpha inhibitors in asthma and COPD: we must not throw the baby out with the bath water[J]. Pulm Pharmacol Ther, 2010, 23(2):121-128.
[21] 樊学扬. 难治性哮喘患者血清肿瘤坏死因子?水平及其临床意义[J]. 中国实用医药, 2013, 8(25):58-59.
文章导航

/