综述

氧化三甲胺与心血管疾病关系的研究进展

展开
  • 南京医科大学公共卫生学院现代毒理学教育部重点实验室,江苏 南京 211166

收稿日期: 2018-07-03

  网络出版日期: 2019-04-25

基金资助

国家自然科学基金(81573174);优秀青年科学基金项目(81722040)

本文引用格式

陈瑶瑶, 顾爱华 . 氧化三甲胺与心血管疾病关系的研究进展[J]. 诊断学理论与实践, 2019 , 18(2) : 237 -240 . DOI: 10.16150/j.1671-2870.2019.02.023

参考文献

[1] Bayoumi AS, Aonuma T, Teoh JP, et al. Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases[J]. Acta Pharmacol Sin, 2018, 39(7):1100-1109.
[2] Brown JM, Hazen SL. Microbial modulation of cardiovascular disease[J]. Nat Rev Microbiol, 2018, 16(3):171-181.
[3] Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association[J]. Circulation, 2015, 131(4):e29-e322.
[4] Kertai MD, Li YJ, Li YW, et al. Genome-wide association study of perioperative myocardial infarction after coronary artery bypass surgery[J]. BMJ Open, 2015, 5(5):e006920.
[5] Myocardial Infarction Genetics Consortium, Kathiresan S, Voight BF, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants[J]. Nat Genet, 2009, 41(3):334-341.
[6] CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, et al. Large-scale association analysis identifies new risk loci for coronary artery disease[J]. Nat Genet, 2013, 45(1):25-33.
[7] Aron-Wisnewsky J, Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders[J]. Nat Rev Nephrol, 2016, 12(3):169-181.
[8] Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004, 101(44):15718-15723.
[9] Kasselman LJ, Vernice NA, DeLeon J, et al. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity[J]. Atherosclerosis, 2018, 271:203-213.
[10] Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5):576-585.
[11] Trenteseaux C, Gaston AT, Aguesse A, et al. Perinatal Hypercholesterolemia Exacerbates Atherosclerosis Lesions in Offspring by Altering Metabolism of Trimethylamine-N-Oxide and Bile Acids[J]. Arterioscler Thromb Vasc Biol, 2017, 37(11):2053-2063.
[12] Zeisel SH, Warrier M. Trimethylamine N-Oxide the Microbiome, and Heart and Kidney Disease[J]. Annu Rev Nutr, 2017, 37:157-181.
[13] Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regu-lation[J]. Cell Metab, 2013, 17(1):49-60.
[14] Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic disea-ses[J]. Annu Rev Med, 2015, 66:343-359.
[15] Fennema D, Phillips IR, Shephard EA. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease[J]. Drug Metab Dispos, 2016, 44(11):1839-1850.
[16] Yancey PH, Rhea MD, Kemp KM, et al. Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure[J]. Cell Mol Biol (Noisy-le-grand), 2004, 50(4):371-376.
[17] Organ CL, Otsuka H, Bhushan S, et al. Choline Diet and Its Gut Microbe-Derived Metabolite, Trimethylamine N-Oxide, Exacerbate Pressure Overload-Induced Heart Fai-lure[J]. Circ Heart Fail, 2016, 9(1):e002314.
[18] Sheard NF, Zeisel SH. An in vitro study of choline uptake by intestine from neonatal and adult rats[J]. Pediatr Res, 1986, 20(8):768-772.
[19] Koeth RA, Levison BS, Culley MK, et al. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO[J]. Cell Metab, 2014, 20(5):799-812.
[20] Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341):57-63.
[21] Hernandez D, Janmohamed A, Chandan P, et al. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: identification of novel gene and pseudogene clusters[J]. Pharmacogenetics, 2004, 14(2):117-130.
[22] Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism[J]. Pharmacol Ther, 2005, 106(3):357-387.
[23] Ferreira F, Esteves S, Almeida LS, et al. Trimethylaminuria (fish odor syndrome): genotype characterization among Portuguese patients[J]. Gene, 2013, 527(1):366-370.
[24] Gao C, Catucci G, Castrignanò S, et al. Inactivation mechanism of N61S mutant of human FMO3 towards trimethylamine[J]. Sci Rep, 2017, 7(1):14668.
[25] Ufnal M, Zadlo A, Ostaszewski R. TMAO: A small molecule of great expectations[J]. Nutrition, 2015, 31(11-12):1317-1323.
[26] Cho CE, Caudill MA. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire?[J]. Trends Endocrinol Metab, 2017, 28(2):121-130.
[27] Zhang AQ, Mitchell SC, Smith RL. Dietary precursors of trimethylamine in man: a pilot study[J]. Food Chem Toxicol, 1999, 37(5):515-520.
[28] Zheng Y, Li Y, Rimm EB, et al. Dietary phosphatidylcholine and risk of all-cause and cardiovascular-specific mortality among US women and men[J]. Am J Clin Nutr, 2016, 104(1):173-180.
[29] Ufnal M, Jazwiec R, Dadlez M, et al. Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats[J]. Can J Cardiol, 2014, 30(12):1700-1705.
[30] Liu M, Han Q, Yang J. Trimethylamine-N-oxide (TMAO) increased aquaporin-2 expression in spontaneously hypertensive rats[J/OL]. Clin Exp Hypertens, 2018-07-09[2018-07-03]https://www.ncbi.nlm.nih.gov/pubmed/29985655.
[31] Tang WH, Wang Z, Shrestha K, et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure[J]. J Card Fail, 2015, 21(2):91-96.
[32] Trøseid M, Ueland T, Hov JR, et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure[J]. J Intern Med, 2015, 277(6):717-726.
[33] Schugar RC, Brown JM. Emerging roles of flavin monooxygenase 3 in cholesterol metabolism and atherosclerosis[J]. Curr Opin Lipidol, 2015, 26(5):426-431.
[34] Stender S, Frikke-Schmidt R, Nordestgaard BG, et al. The ABCG5/8 cholesterol transporter and myocardial infarction versus gallstone disease[J]. J Am Coll Cardiol, 2014, 63(20):2121-2128.
[35] Warrier M, Shih DM, Burrows AC, et al. The TMAO-Generating Enzyme Flavin Monooxygenase 3 Is a Central Regulator of Cholesterol Balance[J/OL]. Cell Rep, 2015-01-14[2018-07-03].https://www.ncbi.nlm.nih.gov/pubmed/25600868.
[36] Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice[J]. J Clin Invest, 2000, 105(8):1049-1056.
[37] Suzuki H, Kurihara Y, Takeya M, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection[J]. Nature, 1997, 386(6622):292-296.
[38] Makrecka-Kuka M, Volska K, Antone U, et al. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria[J]. Toxicol Lett, 2017, 267:32-38.
[39] Shimizu M, Cashman JR, Yamazaki H. Transient trimethylaminuria related to menstruation[J]. BMC Med Genet, 2007, 8:2.
[40] Gao X, Liu X, Xu J, et al. Dietary trimethylamine N-oxi-de exacerbates impaired glucose tolerance in mice fed a high fat diet[J]. J Biosci Bioeng, 2014, 118(4):476-481.
[41] Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161):967-970.
[42] Lever M, George PM, Slow S, et al. Betaine and Trimethylamine-N-Oxide as Predictors of Cardiovascular Outcomes Show Different Patterns in Diabetes Mellitus: An Observational Study[J]. PLoS One, 2014, 9(12):e114969.
[43] Tang WH, Wang Z, Kennedy DJ, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease[J]. Circ Res, 2015, 116(3):448-455.
文章导航

/