宋元林, 侯东妮 . 支气管扩张症患者气道、肠道微生态的研究及临床价值[J]. 诊断学理论与实践, 2019 , 18(05) : 503 -508 . DOI: 10.16150/j.1671-2870.2019.05.004
[1] | Chalmers JD. New Insights Into the Epidemiology of Bronchiectasis[J]. Chest, 2018, 154(6):1272-1273. |
[2] | Lin JL, Xu JF, Qu JM. Bronchiectasis in China[J]. Ann Am Thorac Soc, 2016, 13(5):609-616. |
[3] | Flume PA, Chalmers JD, Olivier KN. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity[J]. Lancet, 2018, 392(10150):880-890. |
[4] | Gleeson K, Eggli DF, Maxwell SL. Quantitative aspiration during sleep in normal subjects[J]. Chest, 1997, 111(5):1266-1272. |
[5] | Huxley EJ, Viroslav J, Gray WR, et al. Pharyngeal aspiration in normal adults and patients with depressed consciousness[J]. Am J Med, 1978, 64(4):564-568. |
[6] | Dickson RP, Erb-Downward JR, Huffnagle GB. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis[J]. Lancet Respir Med, 2014, 2(3):238-246. |
[7] | Ingenito EP, Solway J, McFadden ER Jr, et al. Indirect assessment of mucosal surface temperatures in the airways: theory and tests[J]. J Appl Physiol (1985),1987, 63(5):2075-2083. |
[8] | Dickson RP, Erb-Downward JR, Freeman CM, et al. Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography[J]. Ann Am Thorac Soc, 2015, 12(6):821-830. |
[9] | Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778):1355-1359. |
[10] | Tunney MM, Einarsson GG, Wei L, et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation[J]. Am J Respir Crit Care Med, 2013, 187(10):1118-1126. |
[11] | Dickson RP, Erb-Downward JR, Freeman CM, et al. Changes in the lung microbiome following lung transplantation include the emergence of two distinct Pseudomonas species with distinct clinical associations[J]. PLoS One, 2014, 9(5):e97214. |
[12] | Clooney AG, Fouhy F, Sleator RD, et al. Comparing Apples and Oranges?: Next Generation Sequencing and Its Impact on Microbiome Analysis[J]. PLoS One, 2016, 11(2):e0148028. |
[13] | Kembel SW, Wu M, Eisen JA, et al. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance[J]. PLoS Comput Biol, 2012, 8(10):e1002743. |
[14] | Stoddard SF, Smith BJ, Hein R, et al. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development[J]. Nucleic Acids Res, 2015,43(Database issue):D593-D598. |
[15] | Chalmers JD, Goeminne P, Aliberti S, et al. The bronchiectasis severity index. An international derivation and validation study[J]. Am J Respir Crit Care Med, 2014, 189(5):576-585. |
[16] | Aksamit TR, O'Donnell AE, Barker A, et al. Adult Patients With Bronchiectasis: A First Look at the US Bronchiectasis Research Registry[J]. Chest, 2017, 151(5):982-992. |
[17] | Guan WJ, Gao YH, Xu G, et al. Aetiology of bronchiectasis in Guangzhou, southern China[J]. Respirology, 2015, 20(5):739-748. |
[18] | Cox MJ, Turek EM, Hennessy C, et al. Longitudinal assessment of sputum microbiome by sequencing of the 16S rRNA gene in non-cystic fibrosis bronchiectasis patients[J]. PLoS One, 2017, 12(2):e0170622. |
[19] | Byun MK, Chang J, Kim HJ, et al. Differences of lung microbiome in patients with clinically stable and exacerbated bronchiectasis[J]. PLoS One, 2017, 12(8):e0183553. |
[20] | Tunney MM, Klem ER, Fodor AA, et al. Use of culture and molecular analysis to determine the effect of antibio-tic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis[J]. Thorax, 2011, 66(7):579-584. |
[21] | Vallières E, Tumelty K, Tunney MM, et al. Efficacy of Pseudomonas aeruginosa eradication regimens in bronchiectasis[J]. Eur Respir J, 2017, 49(4),pii:1600851. |
[22] | Zhao J, Schloss PD, Kalikin LM, et al. Decade-long bacterial community dynamics in cystic fibrosis airways[J]. Proc Natl Acad Sci U S A, 2012, 109(15):5809-5814. |
[23] | Coburn B, Wang PW, Diaz Caballero J, et al. Lung microbiota across age and disease stage in cystic fibrosis[J]. Sci Rep, 2015, 5:10241. |
[24] | Carmody LA, Caverly LJ, Foster BK, et al. Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis[J]. PLoS One, 2018, 13(3):e0194060. |
[25] | Nguyen LD, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome[J]. Front Microbiol, 2015, 6:89. |
[26] | Máiz L, Vendrell M, Olveira C, et al. Prevalence and factors associated with isolation of Aspergillus and Candida from sputum in patients with non-cystic fibrosis bronchiectasis[J]. Respiration, 2015, 89(5):396-403. |
[27] | Mac Aogáin M, Chandrasekaran R, Lim AYH, et al. Immunological corollary of the pulmonary mycobiome in bronchiectasis: the CAMEB study[J]. Eur Respir J, 2018, 52(1),pii:1800766. |
[28] | Mitchell AB, Mourad B, Buddle L, et al. Viruses in bronchiectasis: a pilot study to explore the presence of community acquired respiratory viruses in stable patients and during acute exacerbations[J]. BMC Pulm Med, 2018, 18(1):84. |
[29] | Gao YH, Guan WJ, Xu G, et al. The role of viral infection in pulmonary exacerbations of bronchiectasis in adults: a prospective study[J]. Chest, 2015, 147(6):1635-1643. |
[30] | Wylie KM. The Virome of the Human Respiratory Tract[J]. Clin Chest Med, 2017, 38(1):11-19. |
[31] | Ishak A, Everard ML. Persistent and Recurrent Bacterial Bronchitis-A Paradigm Shift in Our Understanding of Chronic Respiratory Disease[J]. Front Pediatr, 2017, 5:19. |
[32] | Han MK, Huang YJ, Lipuma JJ, et al. Significance of the microbiome in obstructive lung disease[J]. Thorax, 2012, 67(5):456-463. |
[33] | Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease[J]. N Engl J Med, 2008, 359(22):2355-2365. |
[34] | Fodor AA, Klem ER, Gilpin DF, et al. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations[J]. PLoS One, 2012, 7(9):e45001. |
[35] | Chalmers JD, Smith MP, McHugh BJ, et al. Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis[J]. Am J Respir Crit Care Med, 2012, 186(7):657-665. |
[36] | Molyneaux PL, Mallia P, Cox MJ, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2013, 188(10):1224-1231. |
[37] | Faner R, Sibila O, Agustí A, et al. The microbiome in respiratory medicine: current challenges and future perspectives[J]. Eur Respir J, 2017, 49(4),pii:1602086. |
[38] | Chin SM, Sauk J, Mahabamunuge J, et al. Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection in Patients With Inflammatory Bowel Disease: A Single-Center Experience[J]. Clin Gastroenterol Hepatol, 2017, 15(4):597-599. |
[39] | Bruzzese E, Callegari ML, Raia V, et al. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial[J]. PLoS One, 2014, 9(2):e87796. |
[40] | O'Dwyer DN, Dickson RP, Moore BB. The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease[J]. J Immunol, 2016, 196(12):4839-4847. |
[41] | Deriu E, Boxx GM, He X, et al. Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons[J]. PLoS Pathog, 2016, 12(5):e1005572. |
[42] | He Y, Wen Q, Yao F, et al. Gut-lung axis: The microbial contributions and clinical implications[J]. Crit Rev Microbiol, 2017, 43(1):81-95. |
[43] | Nembrini C, Sichelstiel A, Kisielow J, et al. Bacterial-induced protection against allergic inflammation through a multicomponent immunoregulatory mechanism[J]. Thorax, 2011, 66(9):755-763. |
[44] | Huang CF, Chie WC, Wang IJ. Efficacy of Lactobacillus Administration in School-Age Children with Asthma: A Randomized, Placebo-Controlled Trial[J]. Nutrients, 2018, 10(11),pii:E1678. |
[45] | Abreu NA, Nagalingam NA, Song Y, et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis[J]. Sci Transl Med, 2012, 4(151):151ra124. |
[46] | Weiss B, Bujanover Y, Yahav Y, et al. Probiotic supplementation affects pulmonary exacerbations in patients with cystic fibrosis: a pilot study[J]. Pediatr Pulmonol, 2010, 45(6):536-540. |
/
〈 |
|
〉 |