基于游戏的脑电神经反馈训练对认知功能改善作用的研究
网络出版日期: 2022-02-25
基金资助
河北省自然科学基金(H2021206325);河北省科技计划项目(18277705D);河北省老年病防治项目(LNB201807)
Effect of game-based EEG neurofeedback training on improvement of cognitive function
Online published: 2022-02-25
目的: 采用基于游戏的脑电神经反馈系统训练认知障碍患者,观察其认知功能的改善状况。目的: 纳入以记忆力下降为主的认知障碍患者52例,先对其进行简易精神状态检查量表(Mini-Mental State Examination, MMSE)、蒙特利尔认知评估量表(Montreal Cognitive Assessment, MoCA)、阿尔茨海默病评定量表-认知量表(Alzheimer′s Disease Assessment Scale-Cognitive section, ADAS-cog)评估。5 d后,对其进行连续10 d的脑电神经反馈“意念力蚂蚁”游戏训练,每天训练30 min。在训练前、训练第10天采集患者的脑电图,训练完成后,再次评估患者的MMSE、MoCA、ADAS-cog评分。结果: 经过训练,患者的MMSE、MoCA、ADAS-cog量表总分提高,训练前得分分别为(23.10±2.82)分、(18.63±4.10)分、(14.76±5.30)分,训练后分别为(26.06±2.95)分、(21.88±3.94)分、(12.15±5.15)分。患者的认知功能总体改善,其中记忆力改善最为明显,训练前MMSE、MoCA、ADAS-cog量表记忆力部分得分分别为(1.55±0.77)分、(1.33±1.28)分、(4.35±1.11)分,训练结束后的MMSE、MoCA、ADAS-cog量表记忆力部分得分分别为(2.16±0.80)分、(2.29±1.34)分、(3.93±1.30)分,训练前、后差异有统计学意义(P<0.001),同时对患者的脑电复杂度进行计算分析,发现其脑电复杂度提高,以左侧前额叶改善为主。结论: 基于游戏的脑电神经反馈系统训练可显著提高认知障碍患者的认知功能,并能提高其左侧前额叶的脑电复杂度。
马少辰, 郭昕, 王铭维, 王惠君, 余启军, 苏文月, 王华龙, 马芹颖 . 基于游戏的脑电神经反馈训练对认知功能改善作用的研究[J]. 诊断学理论与实践, 2022 , 21(01) : 41 -45 . DOI: 10.16150/j.1671-2870.2022.01.009
Objective: To observe the effect of game-based EEG neurofeedback system on improvement of cognitive function in the patients with cognitive impairment. Methods: Fifty-two patients with cognitive impairment, mainly memory decline, were included, and the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment Scale (MoCA) and Alzheimer′s Disease Assessment Scale-Cognitive section(ADAS-cog) were conducted in the patients to evaluate cognitive impairment. Five days later, each patient was given 30-min EEG neural feedback training, once a day for 10 consecutive days. The EEG was detected before and after training, and MMSE, MoCA and ADAS-cog scores were also evaluated after training. Results: The scores of MMSE, MoCA and ADAS-cog scales after training were all higher(26.06±2.95, 21.88±3.94, 12.15±5.15) than those before training (23.10±2.82, 18.63±4.10, 14.76±5.30) (P<0.05). Before training, the scores of memory on MMSE, MoCA and ADAS-cog scales were 1.55±0.77, 1.33±1.28, 4.35±1.11, respectively, while the above scores increased to 2.16±0.80, 2.29±1.34, 3.93±1.30(P<0.001) after training. The EEG after training showed that the complexity of EEG was improved than that before training, mainly in the left frontal lobe. Conclusions: The game-based EEG neurofeedback system training can significantly improve cognitive function and EEG complexity in the left prefrontal lobe.
Key words: EEG neurofeedback; Memory decline; Cognitive impairment
[1] | 中国痴呆与认知障碍指南写作组, 中国医师协会神经内科医师分会认知障碍疾病专业委员会. 2018中国痴呆与认知障碍诊治指南(一):痴呆及其分类诊断标准[J]. 中华医学杂志, 2018, 98(13):965-970. |
[1] | Chinese dementia and cognitive impairment guideline writing group, Committee of cognitive impairment neurologist branch of Chinese Medical Association. 2018 Chinese guidelines for the diagnosis and treatment of dementia and cognitive impairment(I): dementia and its classification and diagnostic criteria[J]. Chin J Med, 2018, 98(13):965-970. |
[2] | Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health. 2020 Dec; 5(12):e661-e671. |
[3] | Brenner EK, Hampstead BM, Grossner EC, et al. Dimini-shed neural network dynamics in amnestic mild cognitive impairment[J]. Int J Psychophysiol, 2018, 130:63-72. |
[4] | Tan G, Thornby J, Hammond DC, et al. Meta-analysis of EEG biofeedback in treating epilepsy[J]. Clin EEG Neurosci, 2009, 40(3):173-179. |
[5] | Sonuga-Barke EJ, Brandeis D, Cortese S, et al. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments[J]. Am J Psychiatry, 2013, 170(3):275-289. |
[6] | Surmeli T, Eralp E, Mustafazade I, et al. Quantitative EEG Neurometric Analysis-Guided Neurofeedback Treatment in Dementia: 20 Cases. How Neurometric Analysis Is Important for the Treatment of Dementia and as a Biomarker?[J]. Clin EEG Neurosci, 2016, 47(2):118-133. |
[7] | 李昕, 张洁, 史春燕. 意念力游戏训练改善脑认知功能状态研究[J]. 生物医学工程学杂志, 2019, 36(3):364-370,378. |
[7] | Li X, Zhang J, Shi C Y. Study on the improvement of brain cognitive function by mental game training[J]. J Biomed Eng, 2019, 36(3):364-370,378. |
[8] | Gallego-Jutglà E, Solé-Casals J, Vialatte FB, et al. A theta-band EEG based index for early diagnosis of Alzheimer′s disease[J]. J Alzheimers Dis, 2015, 43(4):1175-1184. |
[9] | Babiloni C, Lizio R, Del Percio C, et al. Cortical sources of resting state EEG rhythms are sensitive to the progression of early stage Alzheimer′s disease[J]. J Alzheimers Dis, 2013, 34(4):1015-1035. |
[10] | Höller Y, Bathke AC, Uhl A, et al. Combining SPECT and Quantitative EEG Analysis for the Automated Differential Diagnosis of Disorders with Amnestic Symptoms[J]. Front Aging Neurosci, 2017, 9:290. |
[11] | Cecchetti G, Agosta F, Basaia S, et al. Resting-state electroencephalographic biomarkers of Alzheimer′s disease[J]. Neuroimage Clin, 2021, 31:102711. |
[12] | Musaeus CS, Engedal K, Høgh P, et al. EEG Theta Power Is an Early Marker of Cognitive Decline in Dementia due to Alzheimer′s Disease[J]. J Alzheimers Dis, 2018, 64(4):1359-1371. |
[13] | Roh JH, Park MH, Ko D, et al. Region and frequency specific changes of spectral power in Alzheimer′s disease and mild cognitive impairment[J]. Clin Neurophysiol, 2011, 122(11):2169-2176. |
[14] | Babiloni C, Carducci F, Lizio R, et al. Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer′s disease[J]. Hum Brain Mapp, 2013, 34(6):1427-1446. |
[15] | Babiloni C, Blinowska K, Bonanni L, et al. What electrophysiology tells us about Alzheimer′s disease: a window into the synchronization and connectivity of brain neurons[J]. Neurobiol Aging, 2020, 85:58-73. |
[16] | Lavy Y, Dwolatzky T, Kaplan Z, et al. Neurofeedback Improves Memory and Peak Alpha Frequency in Individuals with Mild Cognitive Impairment[J]. Appl Psychophysiol Biofeedback, 2019, 44(1):41-49. |
[17] | Lavy Y, Dwolatzky T, Kaplan Z, et al. Mild Cognitive Impairment and Neurofeedback: A Randomized Controlled Trial[J]. Front Aging Neurosci, 2021, 13:657646. |
[18] | Jirayucharoensak S, Israsena P, Pan-Ngum S, et al. A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment[J]. Clin Interv Aging, 2019, 14:347-360. |
[19] | Mahato S, Paul S. Detection of major depressive disorder using linear and non-linear features from EEG signals[J]. Microsystem Technologies, 2019:1065-1076. |
[20] | Dauwels J, Srinivasan K, Ramasubba Reddy M, et al. Slowing and Loss of Complexity in Alzheimer′s EEG: Two Sides of the Same Coin?[J]. Int J Alzheimers Dis, 2011, 2011:539621. |
[21] | 祝本菊, 陈旭. 轻度认知功能障碍患者的脑电复杂度分析[J]. 中华老年心脑血管病杂志, 2017, 19(11):1129-1132. |
[21] | Zhu B J, Chen X. Analysis of EEG complexity in patients with mild cognitive impairment[J]. Chin J Geriatr Cardiovasc Cerebrovasc Dis, 2017, 19(11):1129-1132. |
/
〈 |
|
〉 |