目的 :探讨急性缺血性卒中早期患者外周血浆中的一组miRNAs水平与心房颤动(房颤)发生间的关系及临床意义。方法 :选择2014年1月至2016年12月在我院住院的急性缺血性卒中患者,根据其是否伴发房颤分为房颤组(70例)与非房颤组(631例),另选择65名健康体检者作为对照组。比较各组间的一般临床资料及缺血性卒中患者早期血浆中一组miRNAs分子的变化;观察伴不同类型房颤与非房颤缺血性卒中患者血浆中的miRNAs差异表达;并进一步用Logistic回归分析miRNAs水平与缺血性卒中患者伴房颤发生间的关系。结果 :血浆中miR-328、miR-29b和miR-150水平在房颤组、非房颤组与对照组间存在差异表达(P<0.05;P<0.01);不同于miR-328和miR-150,miR-29b在伴阵发性房颤的缺血性卒中患者血浆中的水平显著低于非房颤组缺血性卒中患者及对照组(P<0.01)。Logistic回归分析结果显示,血浆中的miR-328、miR-29b及miR-150水平与急性缺血性卒中患者伴发房颤密切相关;miR-29b水平与急性缺血性卒中患者伴发阵发性房颤密切相关。结论 :急性缺血性卒中早期血浆中一组特异性miRNAs分子,特别是miR-29b有望作为急性缺血性卒中患者是否合并房颤的生物学预警指标。
胡荣郭, 庞德芳, 黄澍, 沈振坤, 陈玮, 杨育伟, 来小音, 朱玮, 吴菲菲, 计海峰, 吴大玉, 江梅, 孙家兰, 李龙宣
. 急性缺血性卒中早期血浆miRNAs水平与房颤发生间的关系[J]. 诊断学理论与实践, 2017
, 16(01)
: 98
-103
.
DOI: 10.16150/j.1671-2870.2017.01.019
Objective: To investigate the correlation between the plasma miRNAs levels and atrial fibrillation (AF) in patients with acute cerebral infarction in early stage. Methods: Seven hundred and one patients with acute cerebral infraction addmitted in Gongli Hospital during Jan. 2014 to Nov. 2016 were enrolled, and patients were divided into two groups: group with AF(70 cases) and group without AF (631 cases), and 65 healthy cases were served as controls. Clinical data and miRNAs levels between the 3 groups were analyzed, and miRNAs levels were also compared between paroxysmal and persistent AF. Multivariate regression analysis was used to determine the contribution of plasma miRNAs variables to the presence of atrial fibrillation in patients with cerebral infarction in early stage. Results: Plasma levels of miR-328, miR-29b and miR-150 differed significantly between group with AF, group without AF and control group (P<0.05, P<0.01). Different from miR-328 and miR-150, plasma level of miR-29b in cerebral infarction patients with paroxysmal AF was significantly lower than those in group without AF and controls (P<0.01). Logistic regression analysis showed that the specific miRNAs, miR-328, miR-29b and miR-150 were significantly associated with AF and miR-29b was significantly related to paroxysmal AF in patients with acute cerebral infarction. Conclusions: Levels of some specific plasma miRNAs, especially the miR-29b level might be used as predictor for the existing of AF in patients with acute cerebral infraction in early stage.
[1] Murakoshi N, Aonuma K.Epidemiology of arrhythmias and sudden cardiac death in Asia[J]. Circ J,2013,77(10):2419-2431.
[2] Tse HF, Wang YJ, Ahmed Ai-Abdullah M, et al. Stroke prevention in atrial fibrillation--an Asian stroke perspective[J]. Heart Rhythm,2013,10(7):1082-1088.
[3] Hohnloser SH, Pajitnev D, Pogue J, et al.Incidence of stroke in paroxysmal versus sustained atrial fibrillation in patients taking oral anticoagulation or combined antiplatelet therapy: an ACTIVE W Substudy[J]. J Am Coll Cardiol,2007,50(22):2156-2161.
[4] Flint AC, Tayal AH.The search for paroxysmal atrial fi-brillation in cryptogenic stroke: leave no stone unturned[J]. Neurology,2013,80(17):1542-1543.
[5] King A.Atrial fibrillation: Could subclinical AF be a missing link in the etiology of cryptogenic stroke?[J]. Nat Rev Cardiol,2012,9(3):126.
[6] Manina G, Agnelli G, Becattini C, et al.96 hours ECG monitoring for patients with ischemic cryptogenic stroke or transient ischaemic attack[J]. Intern Emerg Med,2014, 9(1):65-67.
[7] Sanna T, Diener HC, Passman RS, et al.Cryptogenic stroke and underlying atrial fibrillation[J]. N Engl J Med,2014,370(26):2478-2486.
[8] Moubarak G, Tamazyan R, Garcon P, et al.Detection of occult atrial fibrillation by pacemaker interrogation in cryptogenic stroke[J]. J Interv Card Electrophysiol,2014, 39(3):261-265.
[9] Baibars M, Kanjwal K, Marine JE.AF detected on implanted cardiac implantable electronic devices: is there a threshold for thromboembolic risk?[J]. Curr Treat Options Cardiovasc Med,2014,16(3):289.
[10] Wang X, Qiu CG, Huang ZW, et al.The expression and clinical implication of plasma miR-328 in patients with atrial fibrillation[J]. Zhonghua Xin Xue Guan Bing Za Zhi,2013,41(2):126-129.
[11] Dawson K, Wakili R, Ordög B, et al. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation[J]. Circulation,2013,127(14):1466-1475,1475e1-1475e28.
[12] Liu Z, Zhou C, Liu Y, et al.The expression levels of plasma micoRNAs in atrial fibrillation patients[J]. PLoS One,2012,7(9):e44906.
[13] 彭彬, 吴大玉, 孙家兰, 等. 急性脑梗死早期血中miRNAs水平与脑侧支循环建立的关系[J]. 中风与神经疾病杂志,2016,33(2):100-103.
[14] Lu Y, Zhang Y, Wang N, et al.MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J]. Circulation,2010,122(23):2378-2387.
[15] McManus DD, Lin H, Tanriverdi K, et al. Relations between circulating microRNAs and atrial fibrillation: data from the Framingham Offspring Study[J]. Heart Rhythm,2014,11(4):663-669.
[16] Small EM, Olson EN.Pervasive roles of microRNAs in cardiovascular biology[J]. Nature,2011,469(7330):336-342.
[17] de Boer HC, van Solingen C, Prins J, et al. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease[J]. Eur Heart J,2013,34(44):3451-3457.
[18] Wang Y, Huang J, Ma Y, et al.MicroRNA-29b is a thera-peutic target in cerebral ischemia associated with aquaporin 4[J]. J Cereb Blood Flow Metab,2015,35(12):1977-1984.
[19] Khanna S, Rink C, Ghoorkhanian R, et al.Loss of miR-29b following acute ischemic stroke contributes to neural cell death and infarct size[J]. J Cereb Blood Flow Metab,2013,33(8):1197-1206.
[20] Llombart V, Garcia-Berrocoso T, Bustamante A, et al.Cardioembolic stroke diagnosis using blood biomarkers[J]. Curr Cardiol Rev,2013,9(4):340-352.
[21] McManus DD, Tanriverdi K, Lin H, et al. Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation(the miRhythm study)[J]. Heart Rhythm,2015,12(1):3-10.