论著

miR-16在冠状动脉粥样硬化斑块进展中的作用及初步机制研究

展开
  • 1.上海交通大学医学院附属第九人民医院心血管内科,上海 200011
    2.上海交通大学医学院附属瑞金医院心血管内科,上海 200025

收稿日期: 2020-11-23

  网络出版日期: 2022-06-28

基金资助

上海交通大学医学院附属第九人民医院基础研究助推计划资助(JYZZ100)

Preliminary study on the role of miR-16 in progression of coronary atherosclerosis and possible molecular mechanism

Expand
  • 1. Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    2. Department of Cardiology, Ruijing Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Received date: 2020-11-23

  Online published: 2022-06-28

摘要

目的:探讨微小RNA(microRNA,miRNA,miR)-16在冠状动脉粥样斑块发展中的作用及该过程中涉及的可能的作用机制。方法:收集16例行冠状动脉旁路移植术的冠心病患者,于术中获得冠状动脉斑块组织,根据病理学检查将冠状动脉斑块分为纤维斑块组和粥样斑块组。采用miRNAs微阵列芯片(miRNAs array)检测miR-16在冠状动脉纤维斑块和粥样斑块组织中的表达情况。构建体外氧化型低密度脂蛋白(oxidized low density lipoprotein, oxLDL)诱导巨噬细胞向泡沫细胞转化的模型,采用TUNEL检测、细胞计数和蛋白质印迹法来观察泡沫细胞的转化和凋亡情况;采用酶联免疫吸附试验检测泡沫细胞上清液中炎症因子[白细胞介素(interleukin, IL)-6、IL-8、单核细胞趋化蛋白1(monocyte chemoattractant protein1, MCP-1)和基质金属蛋白酶9(matrix metalloproteinase 9, MMP-9)]的释放,用miRNAs array检测miR-16水平;最后将miR-16转染巨噬细胞,再检测泡沫细胞的凋亡情况及炎症因子释放的变化。结果:经miRNAs array检测发现,与冠状动脉纤维斑块相比,冠状动脉粥样斑块组中的miR-16表达升高1.75倍。oxLDL诱导泡沫细胞的体外模型显示,oxLDL可促进巨噬细胞向泡沫细胞转变,并诱导其凋亡,促进释放大量炎症因子(如IL-6、IL-8、MCP-1和MMP-9)。将miR-16转染至巨噬细胞后发现,泡沫细胞凋亡和炎症因子分泌增加(IL-6、IL-8、MCP-1和MMP-9)。结论:oxLDL可诱导泡沫细胞凋亡、炎症因子释放和miR-16高表达,而高表达的miR-16可进一步加剧泡沫细胞的凋亡和炎症反应,促进动脉粥样硬化的进展,miR-16可能是抑制冠状动脉斑块进展的靶点。

本文引用格式

查晴, 于晨溪, 刘亚, 杨玲, 叶佳雯, 刘艳 . miR-16在冠状动脉粥样硬化斑块进展中的作用及初步机制研究[J]. 诊断学理论与实践, 2021 , 20(01) : 82 -87 . DOI: 10.16150/j.1671-2870.2021.01.013

Abstract

Objective: To explore the role of microRNA (miRNA, miR) -16 in the development of coronary atheromatous plaques and to study possible mechanism involved in the process. Methods: Coronary artery tissues were obtained from 16 patients undergoing coronary artery bypass grafting,and the coronary artery plaques were divided into fibrous plaques and atheromatous plaques based on pathological examination. The expression level of miR-16 in coronary fibrous plaques and atheromatous plaques was detected by miRNAs array. The in vitro model of oxidized low density lipoprotein (oxLDL)-induced foam cells from macrophages was established, the transformation as well as apoptosis of foam cells were detected by TUNEL assay, cell counting and Western blotting. The release of inflammatory cytokines [interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1 and matrix metalloproteinase (MMP)-9] in the culture supernatant of form cell was tested by enzyme-linked immunosorbent assay(ELISA), and expression of miR-16 was tested by miRNAs array. Finally, miR-16 was transfected into macrophages and the apoptosis of foam cell as well as the release of inflammatory factors were detected. Results: Compared with fibrous plaques of coronary artery, the expression of miR-16 in coronary atheromatous plaques detected by miRNAs assay increased by 1.75 folds. In vitro model of oxLDL-induced foam cells showed that oxLDL might promote the transfer of macrophages into foam cells and induce foam cells apoptosis and stimulate the release of inflammatory factors (such as IL-6, IL-8, MCP-1 and MMP-9). Macrophages transfected with miR-16 could further induce the apoptosis of foam cells and secretion of inflammatory factors. Conclusions: oxLDL could induce the apoptosis of foam cells, release of inflammatory factors and up-regulate miR-16 expression, and the high expression of miR-16 could further enhance foam cell apoptosis and inflammatory response, further promote the progression of atherosclerosis. miR-16 might serve as a potential target for inhibiting artherosclerosis.

参考文献

[1] Libby P, Theroux P. Pathophysiology of coronary artery disease[J]. Circulation, 2005, 111(25):3481-3488.
[2] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志, 2020, 35(9):833-854.
[3] Khera AV, Kathiresan S. Genetics of coronary artery di-sease: discovery, biology and clinical translation[J]. Nat Rev Genet, 2017, 18(6):331-344.
[4] Lusis AJ. Atherosclerosis[J]. Nature, 2000, 407(6801):233-241.
[5] Frostegård J. Immunity, atherosclerosis and cardiovascular disease[J]. BMC Med, 2013, 11:117.
[6] Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in atherogenesis[J]. Curr Med Chem, 2019, 26(9):1693-1700.
[7] Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture[J]. Circ Res, 2014, 114(12):1852-1866.
[8] Laffont B, Rayner KJ. MicroRNAs in the pathobiology and therapy of atherosclerosis[J]. Can J Cardiol, 2017, 33(3):313-324.
[9] Lu Y, Thavarajah T, Gu W, et al. Impact of miRNA in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2018, 38(9):e159-e170.
[10] Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4[J]. FEBS Lett, 2011, 585(6):854-860.
[11] Wang M, Li J, Cai J, et al. Overexpression of MicroRNA-16 alleviates atherosclerosis by inhibition of inflammatory pathways[J]. Biomed Res Int, 2020, 2020:8504238.
[12] O Sullivan JF, Neylon A, McGorrian C, et al. miRNA-93-5p and other miRNAs as predictors of coronary artery disease and STEMI[J]. Int J Cardiol, 2016, 224:310-316.
[13] Di Pietro N, Formoso G, Pandolfi A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis[J]. Vascul Pharmacol, 2016, 84:1-7.
[14] Gisterå A, Hansson GK. The immunology of atherosclerosis[J]. Nat Rev Nephrol, 2017, 13(6):368-380.
[15] Guo JF, Zhang Y, Zheng QX, et al. Association between elevated plasma microRNA-223 content and severity of coronary heart disease[J]. Scand J Clin Lab Invest, 2018, 78(5):373-378.
[16] Bao MH, Li GY, Huang XS, et al. Long noncoding RNA LINC00657 acting as a miR-590-3p sponge to facilitate low concentration oxidized low-density lipoprotein-induced angiogenesis[J]. Mol Pharmacol, 2018, 93(4):368-375.
[17] Jiang W, Li T, Wang J, et al. miR-140-3p Suppresses cell growth and induces apoptosis in colorectal cancer by targeting PD-L1[J]. Onco Targets Ther, 2019, 12:10275-10285.
[18] Yan L, Cai K, Sun K, et al. MiR-1290 promotes prolife-ration, migration, and invasion of glioma cells by targe-ting LHX6[J]. J Cell Physiol, 2018, 233(10):6621-6629.
[19] Zhou R, Li X, Hu G, et al. miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene[J]. PLoS One, 2012, 7(1):e30772.
[20] Jing Q, Huang S, Guth S, et al. Involvement of microRNA in AU-rich element-mediated mRNA instability[J]. Cell, 2005, 120(5):623-634.
[21] Krogmann AO, Lüsebrink E, Steinmetz M, et al. Proinflammatory stimulation of Toll-like receptor 9 with high dose CpG ODN 1826 impairs endothelial regeneration and promotes atherosclerosis in mice[J]. PLoS One, 2016, 11(1):e0146326.
[22] Satoh M, Takahashi Y, Tabuchi T, et al. Circulating Toll-like receptor 4-responsive microRNA panel in patients with coronary artery disease: results from prospective and randomized study of treatment with renin-angiotensin system blockade[J]. Clin Sci (Lond), 2015, 128(8):483-491.
[23] Lin F, Pei L, Zhang Q, et al. Ox-LDL induces endothelial cell apoptosis and macrophage migration by regulating caveolin-1 phosphorylation[J]. J Cell Physiol, 2018, 233(10):6683-6692.
[24] Borghi A, Verstrepen L, Beyaert R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death[J]. Biochem Pharmacol, 2016, 116:1-10.
[25] Chen T, Xiao Q, Wang X, et al. miR-16 regulates proli-feration and invasion of lung cancer cells via the ERK/MAPK signaling pathway by targeted inhibition of MAPK kinase 1(MEK1)[J]. J Int Med Res, 2019, 47(10):5194-5204.
[26] Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: from gene discovery to treatment[J]. Cell Death Differ, 2018, 25(1):21-26.
文章导航

/