章淼滢, 罗飞宏 . 儿童单基因糖尿病诊治进展及诊断策略[J]. 诊断学理论与实践, 2021 , 20(03) : 229 -232 . DOI: 10.16150/j.1671-2870.2021.03.001
[1] | Misra S, Owen KR. Genetics of monogenic diabetes: present clinical challenges[J]. Curr Diab Rep, 2018, 18(12):141. |
[2] | Lemelman MB, Letourneau L, Greeley SAW. Neonatal diabetes mellitus: an update on diagnosis and management[J]. Clin Perinatol, 2018, 45(1):41-59. |
[3] | Hattersley AT, Greeley SAW, Polak M, et al. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents[J]. Pediatr Diabetes, 2018, 19(Suppl 27):47-63. |
[4] | Harris AG, Letourneau LR, Greeley SAW. Monogenic diabetes: the impact of making the right diagnosis[J]. Curr Opin Pediatr, 2018, 30(4):558-567. |
[5] | Nansseu JR, Ngo-Um SS, Balti EV. Incidence, prevalence and genetic determinants of neonatal diabetes mellitus: a systematic review and meta-analysis protocol[J]. Syst Rev, 2016, 5(1):188. |
[6] | Jacobs E, Tamayo T, Rathmann W. Epidemiologie des diabetes in Deutschland[J]. Dtsch Gesundheitsbericht Diabetes, 2017, 2017:10-21. |
[7] | Broome DT, Pantalone KM, Kashyap SR, et al. Approach to the patient with MODY-monogenic diabetes[J]. J Clin Endocrinol Metab, 2021, 106(1):237-250. |
[8] | Shepherd M, Shields B, Hammersley S, et al. Systematic population screening, using biomarkers and genetic tes-ting, identifies 2.5% of the U.K. pediatric diabetes popu-lation with monogenic diabetes[J]. Diabetes Care, 2016, 39(11):1879-1888. |
[9] | Dahl A, Kumar S. Recent advances in neonatal diabetes[J]. Diabetes Metab Syndr Obes, 2020, 13:355-364. |
[10] | Yahaya TO, Ufuoma SB. Genetics and pathophysiology of maturity-onset diabetes of the young (MODY): a review of current trends[J]. Oman Med J, 2020, 35(3):e126. |
[11] | Firdous P, Nissar K, Ali S, et al. Genetic testing of maturity-onset diabetes of the young current status and future perspectives[J]. Front Endocrinol (Lausanne), 2018, 9:253. |
[12] | Sharari S, Abou-Alloul M, Hussain K, et al. Fanconi-bickel syndrome: a review of the mechanisms that lead to dysglycaemia[J]. Int J Mol Sci, 2020, 21(17):6286. |
[13] | Sun C, Pei Z, Zhang M, et al. Recovered insulin production after thiamine administration in permanent neonatal diabetes mellitus with a novel solute carrier family 19 member 2 (SLC19A2) mutation[J]. J Diabetes, 2018, 10(1):50-58. |
[14] | Wang X, Sterr M, Burtscher I, et al. Genome-wide analysis of PDX1 target genes in human pancreatic progenitors[J]. Mol Metab, 2018, 9:57-68. |
[15] | Trott J, Alpagu Y, Tan EK, et al. Mitchell-Riley syndrome iPSCs exhibit reduced pancreatic endoderm differentiation due to a mutation in RFX6[J]. Development, 2020, 147(21):dev194878. |
[16] | Solorzano-Vargas RS, Bjerknes M, Wang J, et al. Null mutations of NEUROG3 are associated with delayed-onset diabetes mellitus[J]. JCI Insight, 2020, 5(1):e127657. |
[17] | Hancili S, Bonnefond A, Philippe J, et al. A novel NEUROG3 mutation in neonatal diabetes associated with a neuro-intestinal syndrome[J]. Pediatr Diabetes, 2018, 19(3):381-387. |
[18] | Girard R, Darsigny M, Jones C, et al. HNF4α is a novel regulator of intestinal glucose-dependent insulinotropic polypeptide[J]. Sci Rep, 2019, 9(1):4200 |
[19] | Letourneau LR, Greeley SAW. Congenital forms of diabetes: the beta-cell and beyond[J]. Curr Opin Genet Dev, 2018, 50:25-34. |
[20] | Jamee M, Zaki-Dizaji M, Lo B, et al. Clinical, immunological, and genetic features in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-like syndrome[J]. J Allergy Clin Immunol Pract, 2020, 8(8):2747-2760,e7. |
[21] | Delvecchio M, Iacoviello M, Pantaleo A, et al. Clinical spectrum associated with wolfram syndrome type 1 and type 2: a review on genotype-phenotype correlations[J]. Int J Environ Res Public Health, 2021, 18(9):4796. |
[22] | Gaál Z, Balogh I. Monogenic forms of diabetes mellitus[J]. Exp Suppl, 2019, 111:385-416. |
[23] | American Diabetes Association. 2. Classification and dia-gnosis of diabetes: standards of medical care in diabetes-2020[J]. Diabetes Care, 2020, 43(Suppl 1):S14-S31. |
[24] | 中华医学会儿科学分会内分泌遗传代谢学组. 儿童单基因糖尿病临床诊断与治疗专家共识[J]. 中华儿科杂志, 2019, 57(7):508-514. |
[25] | Zhang M, Chen X, Shen S, et al. Sulfonylurea in the treatment of neonatal diabetes mellitus children with hete-rogeneous genetic backgrounds[J]. J Pediatr Endocrinol Metab, 2015, 28(7-8):877-884. |
[26] | Beltrand J, Elie C, Busiah K, et al. Sulfonylurea therapy benefits neurological and psychomotor functions in patients with neonatal diabetes owing to potassium channel mutations[J]. Diabetes Care, 2015, 38(11):2033-2041. |
[27] | Huang Q, Liu X, Zhang Y, et al. Molecular feature and therapeutic perspectives of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome[J]. J Genet Genomics, 2020, 20, 47(1):17-26. |
[28] | Ortigoza-Escobar JD, Molero-Luis M, Arias A, et al. Treatment of genetic defects of thiamine transport and metabolism[J]. Expert Rev Neurother, 2016, 16(7):755-763. |
[29] | Mohan V, Radha V. Precision Diabetes Is slowly beco-ming a Reality[J]. Med Princ Pract, 2019, 28(1):1-9. |
/
〈 |
|
〉 |