综述

基因检测在慢性肾脏病诊治中的应用及进展

展开
  • 上海交通大学医学院附属瑞金医院肾脏科,上海 200025

收稿日期: 2020-05-30

  网络出版日期: 2022-07-14

基金资助

国家自然科学基金(81870460);国家自然科学基金(81570598);国家自然科学基金(81370015);上海科委科技创新行动计划(1744190 2200);上海市卫生计生系统百人计划(2018 BR37);上海市教委高原高峰临床医学基金(20152207)

本文引用格式

余舒文, 方正滢, 谢静远 . 基因检测在慢性肾脏病诊治中的应用及进展[J]. 诊断学理论与实践, 2020 , 19(06) : 613 -617 . DOI: 10.16150/j.1671-2870.2020.06.013

参考文献

[1] Chen N, Wang W, Huang Y, et al. Community-based study on CKD subjects and the associated risk factors[J]. Nephrol Dial Transplant, 2009, 24(7):2117-2123.
[2] Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey[J]. Lancet, 2012, 379(9818):815-822.
[3] Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States[J]. JAMA, 2007, 298(17):2038-2047.
[4] Rao J, Liu X, Mao J, et al. Genetic spectrum of renal disease for 1001 Chinese children based on a multicenter registration system[J]. Clin Genet, 2019, 96(5):402-410.
[5] Chiou YY, Lin CY, Chen MJ, et al. Etiology and pedia-tric chronic kidney disease progression: Taiwan Pediatric Renal Collaborative Study[J]. J Formos Med Assoc, 2016, 115(9):752-763.
[6] Skrunes R, Svarstad E, Reisæter AV, et al. Familial clustering of ESRD in the Norwegian population[J]. Clin J Am Soc Nephrol, 2014, 9(10):1692-1700.
[7] Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease[J]. Nat Rev Nephrol, 2016, 12(3):133-146.
[8] Rossanti R, Morisada N, Nozu K, et al. Clinical and genetic variability of PAX2-related disorder in the Japanese population[J]. J Hum Genet, 2020, 65(6):541-549.
[9] Sanna-Cherchi S, Sampogna RV, Papeta N, et al. Mutations in DSTYK and dominant urinary tract malformations[J]. N Engl J Med, 2013, 369(7):621-629.
[10] Halbritter J, Porath JD, Diaz KA, et al. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy[J]. Hum Genet, 2013, 132(8):865-884.
[11] Luo F, Tao YH. Nephronophthisis: a review of genotype-phenotype correlation[J]. Nephrology (Carlton), 2018, 23(10):904-911.
[12] Groopman EE, Marasa M, Cameron-Christie S, et al. Diag-nostic utility of exome sequencing for kidney disease[J]. N Engl J Med, 2019, 380(2):142-151.
[13] Warejko JK, Tan W, Daga A, et al. Whole exome sequencing of patients with steroid-resistant nephrotic syndrome[J]. Clin J Am Soc Nephrol, 2018, 13(1):53-62.
[14] Braun DA, Schueler M, Halbritter J, et al. Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity[J]. Kidney Int, 2016, 89(2):468-475.
[15] Zelikovic I, Szargel R, Hawash A, et al. A novel mutation in the chloride channel gene, CLCNKB, as a cause of Gitelman and Bartter syndromes[J]. Kidney Int, 2003, 63(1):24-32.
[16] Mann N, Braun DA, Amann K, et al. Whole-exome sequencing enables a precision medicine approach for kidney transplant recipients[J]. J Am Soc Nephrol, 2019, 30(2):201-215.
[17] Hinkes BG, Mucha B, Vlangos CN, et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2)[J]. Pediatrics, 2007, 119(4):e907-e919.
[18] Sadowski CE, Lovric S, Ashraf S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome[J]. J Am Soc Nephrol, 2015, 26(6):1279-1289.
[19] Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency[J]. N Engl J Med, 2008, 358(26):2849-2850.
[20] Atmaca M, Gulhan B, Korkmaz E, et al. Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment[J]. Pediatr Nephrol, 2017, 32(8):1369-1375.
[21] van der Veen SJ, Hollak CEM, et al. Developments in the treatment of Fabry disease[J]. J Inherit Metab Dis, 2020, 43(5):908-921.
[22] Carpenter TO, Whyte MP, Imel EA, et al. Burosumab therapy in children with X-linked hypophosphatemia[J]. N Engl J Med, 2018, 378(21):1987-1998.
[23] Kopp JB, Nelson GW, Sampath K, et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy[J]. J Am Soc Nephrol, 2011, 22(11):2129-2137.
[24] Gribouval O, Boyer O, Hummel A, et al. Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults[J]. Kidney Int, 2018, 94(5):1013-1022.
[25] Bierzynska A, McCarthy HJ, Soderquest K, et al. Geno-mic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management[J]. Kidney Int, 2017, 91(4):937-947.
[26] Shi M, Ouyang Y, Yang M, et al. IgA nephropathy susceptibility loci and disease progression[J]. Clin J Am Soc Nephrol, 2018, 13(9):1330-1338.
[27] Ouyang Y, Zhu L, Shi M, et al. A rare genetic defect of MBL2 increased the risk for progression of IgA nephropathy[J]. Front Immunol, 2019, 10:537.
[28] Zhou C, Mei C, Xue C. Preimplantation genetic diagnosis of autosomal dominant polycystic kidney disease applied in China[J]. Am J Kidney Dis, 2018, 72(5):767.
[29] Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5):405-424.
文章导航

/