叶蕾, 李浩榕 . 良恶性甲状腺结节的分子鉴别诊断进展[J]. 诊断学理论与实践, 2020 , 19(04) : 334 -338 . DOI: 10.16150/j.1671-2870.2020.04.002
[1] | Burman KD, Wartofsky L. Clinical practice. Thyroid no-dules[J]. N Engl J Med, 2015, 373(24):2347-2356. |
[2] | Haugen BR, Alexander EK, Bible KC, et al. 2015 Ame-rican Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer[J]. Thyroid, 2016, 26(1):1-133. |
[3] | Hegedüs L. Clinical practice. The thyroid nodule[J]. N Engl J Med, 2004, 351(17):1764-1771. |
[4] | Mandel SJ. A 64-year-old woman with a thyroid nodule[J]. JAMA, 2004, 292(21):2632-2642. |
[5] | Gharib H, Goellner JR. Fine-needle aspiration biopsy of the thyroid: an appraisal[J]. Ann Intern Med, 1993, 118(4):282-289. |
[6] | Bongiovanni M, Spitale A, Faquin WC, et al. The Bethesda System for Reporting Thyroid Cytopathology: a meta-analysis[J]. Acta Cytol, 2012, 56(4):333-339. |
[7] | Xing M. Molecular pathogenesis and mechanisms of thyroid cancer[J]. Nat Rev Cancer, 2013, 13(3):184-199. |
[8] | Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma[J]. J Natl Cancer Inst, 2003, 95(8):625-627. |
[9] | Yoo SK, Lee S, Kim SJ, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers[J]. PLoS Genet, 2016, 12(8):e1006239. |
[10] | Yoo SK, Song YS, Lee EK, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer[J]. Nat Commun, 2019, 10(1):2764. |
[11] | Calebiro D, Grassi ES, Eszlinger M, et al. Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas[J]. J Clin Invest, 2016, 126(9):3383-3388. |
[12] | Ye L, Zhou X, Huang F, et al. The genetic landscape of benign thyroid nodules revealed by whole exome and transcriptome sequencing[J]. Nat Commun, 2017, 8:15533. |
[13] | Goldner WS, Angell TE, McAdoo SL, et al. Molecular variants and their risks for malignancy in cytologically indeterminate thyroid nodules[J]. Thyroid, 2019, 29(11):1594-1605. |
[14] | Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer[J]. JAMA, 2013, 309(14):1493-1501. |
[15] | Xing M, Liu R, Liu X, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence[J]. J Clin Oncol, 2014, 32(25):2718-2726. |
[16] | Nikiforov YE, Ohori NP, Hodak SP, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples[J]. J Clin Endocrinol Metab, 2011, 96(11):3390-3397. |
[17] | Nikiforova MN, Wald AI, Roy S, et al. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer[J]. J Clin Endocrinol Metab, 2013, 98(11):E1852-E1860. |
[18] | Nikiforov YE, Carty SE, Chiosea SI, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay[J]. Cancer, 2014, 120(23):3627-3634. |
[19] | Nikiforov YE, Carty SE, Chiosea SI, et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology[J]. Thyroid, 2015, 25(11):1217-1223. |
[20] | Nikiforova MN, Mercurio S, Wald AI, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules[J]. Cancer, 2018, 124(8):1682-1690. |
[21] | Steward DL, Carty SE, Sippel RS, et al. Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study[J]. JAMA Oncol, 2019, 5(2):204-212. |
[22] | Chen T, Gilfix BM, Rivera J, et al. The role of the ThyroSeq v3 molecular test in the surgical management of thyroid nodules in the canadian public health care setting[J/OL]. Thyroid, 2020-05-05[2020-05-11]. https://pubmed.ncbi.nlm.nih.gov/32242511/. |
[23] | Chudova D, Wilde JI, Wang ET, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data[J]. J Clin Endocrinol Metab, 2010, 95(12):5296-5304. |
[24] | Alexander EK, Kennedy GC, Baloch ZW, et al. Preope-rative diagnosis of benign thyroid nodules with indeterminate cytology[J]. N Engl J Med, 2012, 367(8):705-715. |
[25] | Patel KN, Angell TE, Babiarz J, et al. Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules[J]. JAMA Surg, 2018, 153(9):817-824. |
[26] | Livhits MJ, Kuo EJ, Leung AM, et al. Gene expression classifier vs targeted next-generation sequencing in the management of indeterminate thyroid nodules[J]. J Clin Endocrinol Metab, 2018, 103(6):2261-2268. |
[27] | Nikiforova MN, Tseng GC, Steward D, et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility[J]. J Clin Endocrinol Metab, 2008, 93(5):1600-1608. |
[28] | Mazeh H, Deutch T, Karas A, et al. Next-generation sequencing identifies a highly accurate miRNA panel that distinguishes well-differentiated thyroid cancer from benign thyroid nodules[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27(8):858-863. |
/
〈 |
|
〉 |