收稿日期: 2020-04-22
网络出版日期: 2022-07-15
基金资助
国家自然科学基金(81871267);国家自然科学基金(81401335);上海申康医院发展中心临床创新三年行动计划(16CR3098B);上海交通大学医学院教材建设项目
Analysis of bone marrow lymphocyte subsets in patients with acute myeloid leukemia and its clinical significance
Received date: 2020-04-22
Online published: 2022-07-15
目的: 分析急性髓细胞性白血病(acute myeloid leukemia,AML)患者的骨髓淋巴细胞亚群分布,比较不同疾病阶段、不同预后风险患者间的骨髓免疫功能差异,并探讨其临床意义。方法: 选取131例AML确诊患者治疗前的骨髓样本,采用多色流式细胞术分析样本中各淋巴细胞亚群(CD4+、CD8+、CD19+等)占总淋巴细胞的百分比及CD4+/CD8+比值,并将结果与公共数据平台获取的健康者骨髓样本淋巴细胞亚群结果进行比较。AML患者分别为初诊(94例)、继发(18例)及化疗缓解后复发患者(19例),共3组,比较各组间淋巴细胞亚群差异;进一步根据细胞遗传学异常将初诊AML分为低危、中危及高危组,比较3组间的淋巴细胞亚群差异。回溯复发组患者初发时的骨髓样本检测结果,配对比较初发与复发时样本中淋巴细胞亚群的变化。结果: 与健康者比较,AML患者骨髓样本中CD8+ T淋巴细胞百分比显著增高[(31.73%±12.38)%比(21.40%±7.33%),P<0.001],CD19+ B淋巴细胞百分比及CD4+/CD8+比值显著降低(9.62%比14.03%,P<0.01;1.04比1.48,P<0.05);复发患者骨髓样本中的CD8+ T淋巴细胞百分比较初诊患者显著增高[(41.56±11.64%)比(29.86±12.20%),P<0.001],CD19+ B淋巴细胞百分比及CD4+/CD8+比值显著降低(4.18%比11.82%,P<0.05;0.59比1.12,P<0.05)。配对比较显示,复发患者的CD19+ B细胞百分比与其初发时比较显著降低(2.40%比12.41%,P<0.05)。94例初诊AML不同预后风险度的3组间各淋巴细胞亚群比较,差异无统计学意义。各组间自然杀伤(natural killer, NK)细胞百分比差异无统计学意义。结论: AML患者骨髓呈明显的体液免疫及细胞免疫功能抑制状态,AML复发患者的骨髓免疫功能抑制较其初发时更为显著,提示检测AML患者骨髓淋巴亚群的分布情况可能是评估疾病预后的有效指标,对临床使用免疫调节药物治疗具有一定的指导意义。
高燕婷, 赵金艳, 王娟, 李佳, 许雯, 李莉, 蔺丽慧 . 急性髓细胞性白血病患者骨髓淋巴细胞亚群分析及其临床意义[J]. 诊断学理论与实践, 2020 , 19(04) : 407 -413 . DOI: 10.16150/j.1671-2870.2020.04.016
Objective: To investigate the distribution of bone marrow lymphocyte subsets in patients with acute myeloid leukemia (AML),and comparing the bone marrow immune function between patients at different stage of disease and with different prognostic risk, and exploring their related clinical significance. Methods: The bone marrow samples from 131 patients with AML before treatment were collected, and the lymphocyte subsets CD4+ T cells, CD8+ T cells and CD19+ B cells were identified by multi-color flow cytometry for determining the percentages of lymphocyte subsets and CD4+/CD8+ ratio. The results were compared with that of healthy bone marrow samples obtained from the public data platforms. The AML patients included de novo cases (94 cases), secondary cases (18 cases), and relapsing cases after chemotherapy (19 cases). The de novo AML were categorized into low risk, intermediate risk and high risk groups according to the cytogenetic abnormality. Differences in lymphocyte subsets between the three groups and between the three different risk levels were compared. In relapsing patients, the percentages of lymphocyte subsets at onset were compared with that at relapse. Results: Compared with healthy subjects, AML patients had a higher percentage of CD8+ T cells (31.73%±12.38% vs 21.40±7.33%, P<0.001) and lower percentage of CD19+ B cells ( 9.62% vs 14.03%, P<0.01) and lower ratio of CD4+/CD8+ (1.04 vs 1.48, P<0.05). When compared with de novo patients, relapsing patients had higher CD8+ T cells (41.56%±11.64% vs 29.86%±12.20%, P<0.001), but lower CD19+ B cells ( 4.18% vs 11.82%, P<0.05) and CD4+/CD8+ ratio (0.59 vs 1.12, P<0.05). Paired comparison showed that relapsing patients had significant lower percentage of CD19+ B cells than that at onset(2.40% vs 12.41%, P<0.05). There were no significant differences in distribution of lymphocyte subsets between different risk level groups of de novo AML. The percentages of NK cells between the three groups were not different significantly. Conclusions: The bone marrow of AML patients showes obvious suppression of humoral immunity and cellular immunity. The suppression of bone marrow immune function is obviously more severe in patients with relapsing AML than in de novo. It is suggested that the distribution of bone marrow lymphatic subsets may be an effective indicator for detecting and assessing the prognosis of the disease.
Key words: Acute myeloid leukemia; Lymphocyte subsets; Relapse; B lymphocyte; T lymphocyte
[1] | Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia[J]. N Engl J Med, 2015, 373(12):1136-1152. |
[2] | Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Dicker D, et al. The global burden of cancer 2013[J]. JAMA Oncol, 2015, 1(4):505-527. |
[3] | Song X, Peng Y, Wang X, et al. Incidence, survival, and risk factors for adults with acute myeloid leukemia not otherwise specified and acute myeloid leukemia with recurrent genetic abnormalities: analysis of the surveillance, epidemiology, and end results (SEER) database, 2001-2013[J]. Acta Haematol, 2018, 139(2):115-127. |
[4] | Deschler B, Lübbert M. Acute myeloid leukemia: epidemiology and etiology[J]. Cancer, 2006, 107(9):2099-2107. |
[5] | Institute NC. Cancer Stat Facts: Leukemia-Acute Myeloid Leukemia(AML)[DB/OL]. 2017 [2020-04-22]. https://seer.cancer.gov/statfacts/html/alyl.html. |
[6] | Le Dieu R, Taussig DC, Ramsay AG, et al. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts[J]. Blood, 2009, 114(18):3909-3916. |
[7] | Paczulla AM, Rothfelder K, Raffel S, et al. Absence of NKG2D ligands defines leukaemia stem cells and media-tes their immune evasion[J]. Nature, 2019, 572(7768):254-259. |
[8] | Raulet DH, Gasser S, Gowen BG, et al. Regulation of li-gands for the NKG2D activating receptor[J]. Annu Rev Immunol, 2013, 31:413-441. |
[9] | Goswami M, Prince G, Biancotto A, et al. Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy[J]. J Transl Med, 2017, 15(1):155. |
[10] | Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia-a Europe Against Cancer program[J]. Leukemia, 2003, 17(12):2318-2357. |
[11] | Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)-a Europe against cancer program[J]. Leukemia, 2003, 17(12):2474-2486. |
[12] | Duncavage EJ, Abel HJ, Szankasi P, et al. Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia[J]. Mod Pathol, 2012, 25(6):795-804. |
[13] | Luthra R, Patel KP, Reddy NG, et al. Next-generation sequencing-based multigene mutational screening for acute myeloid leukemia using MiSeq: applicability for diagnostics and disease monitoring[J]. Haematologica, 2014, 99(3):465-473. |
[14] | Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405. |
[15] | Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel[J]. Blood, 2017, 129(4):424-447. |
[16] | Oetjen KA, Lindblad KE, Goswami M, et al. Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry[J]. JCI Insight, 2018, 3(23):e124928. |
[17] | 黄方, 郝思国. 急性髓系白血病患者外周血T淋巴细胞亚群的水平变化及临床意义[J]. 第二军医大学学报, 2020, 41(5):546-550. |
[18] | 杨莉, 何浩明. 急性髓细胞白血病患者外周血淋巴细胞亚群的检验分析[J]. 国际检验医学杂志, 2016, 37(6):817-819. |
[19] | 晁丹阳. 68例急性髓细胞白血病患者淋巴细胞亚群的变化分析[J]. 临床医学, 2017, 37(10):66-68. |
[20] | Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia[J]. Crit Rev Oncol Hematol, 2016, 103:62-77. |
[21] | Williams P, Basu S, Garcia-Manero G, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia[J]. Cancer, 2019, 125(9):1470-1481. |
[22] | Bozzano F, Perrone C, Moretta L, et al. NK cell precursors in human bone marrow in health and inflammation[J]. Front Immunol, 2019, 10:2045. |
[23] | Ribeiro VS, Hasan M, Wilson A, et al. Cutting edge: Thymic NK cells develop independently from T cell precursors[J]. J Immunol, 2010, 185(9):4993-4997. |
[24] | Vargas CL, Poursine-Laurent J, Yang L, et al. Development of thymic NK cells from double negative 1 thymocyte precursors[J]. Blood, 2011, 118(13):3570-3578. |
[25] | Freud AG, Yu J, Caligiuri MA. Human natural killer cell development in secondary lymphoid tissues[J]. Semin Immunol, 2014, 26(2):132-137. |
[26] | Jia B, Wang L, Claxton DF, et al. Bone marrow CD8 T cells express high frequency of PD-1 and exhibit reduced anti-leukemia response in newly diagnosed AML patients[J]. Blood Cancer J, 2018, 8(3):34. |
[27] | Knaus HA, Berglund S, Hackl H, et al. Signatures of CD8+ T cell dysfunction in AML patients and their reversibility with response to chemotherapy[J]. JCI Insight, 2018, 3(21):e120974. |
/
〈 |
|
〉 |