论著

人胃癌细胞BGC823中miR-200c靶基因产物波形蛋白的检测及功能研究

展开
  • 1.上海交通大学医学院附属瑞金医院北院消化科,上海 201801
    2.江西省九江市第一人民医院感染控制科,江西 九江 332000
    3.江西省九江市妇幼保健医院检验科,江西 九江 332000
    4.安徽省蚌埠医学院病原生物学实验室,安徽 蚌埠 233030

收稿日期: 2019-07-09

  网络出版日期: 2022-07-15

Functional study and detection of vimentin produced by miR-200c target gene in human gastric cancer BGC823 cells

Expand
  • 1. Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
    2. Department of Infection Control, the First Hospital of Jiujiang City, Jiangxi Jiujiang 332000, China
    3. Department of Laboratory, Maternity and Child Health Hospital of Jiujiang City, Jiangxi 332000, China
    4. Department of Pathogenic Biology, Bengbu Medical College, Anhui Bengbu 233030, China

Received date: 2019-07-09

  Online published: 2022-07-15

摘要

目的: 采用RNA靶向干扰技术,研究人胃癌细胞BGC823中微小RNA(microRNA, miRNA, miR)-200c的靶点锌指E盒增强子结合蛋白2(zinc finger E-box enhancer binding protein 2, ZEB2)基因的表达情况,并检测相关的波形蛋白基因表达情况,观察miR-200c对胃癌BGC823细胞功能的影响。方法: 构建ZEB2基因表达的干扰质粒shZEB2,用Lipofectamine 2000转染胃癌BGC823细胞,用G418筛选稳定转染细胞株,进行实时定量聚合酶链反应(polymerase chain reaction,PCR)检测人BCG823细胞中ZEB2 mRNA、miR-200c及波形蛋白基因的表达水平,并用蛋白印迹法检测ZEB2蛋白、波形蛋白表达水平,噻唑蓝(methylthiazolyldiphenyl-tetrazolium bromide, MTT)法检测细胞增殖能力;Transwell小室检测细胞侵袭能力,划痕实验检测细胞迁移能力。结果: 干扰ZEB2分子表达后,miR-200c表达水平增高,而BGC823细胞的增殖、迁移及侵袭能力明显下降。结论: ZEB2是miR-200c的检测靶点,干扰ZEB2后,胃癌细胞BGC823的增殖、迁移及侵袭能力明显降低。

本文引用格式

杨翠萍, 杨晓金, 杨燕萍, 张梦茵, 谢玲, 俞骁珺, 蔡波尔, 陈登宇, 陈平, 吴云林 . 人胃癌细胞BGC823中miR-200c靶基因产物波形蛋白的检测及功能研究[J]. 诊断学理论与实践, 2020 , 19(04) : 414 -419 . DOI: 10.16150/j.1671-2870.2020.04.017

Abstract

Objective: To investigate the expression of zinc finger E-box enhancer binding protein 2(ZEB2) gene in miR-200c in human gastric cancer BGC823 cells by RNA targeted interference technique, and detect expression of vimentin, so as to observe the effect of miR-200c on the function of gastric cancer BGC823 cells. Methods: The interference plasmids shZEB2 was constructed and transfected to BGC-823 cells in mediation of Lipofectamine 2000. The stable transfectants were screened by G418, and ZEB2 mRNA, miR-200c and vimentin was detected by real-time PCR in BCG823 cells, while protein expression levels of ZEB2 and vimentin by Western blotting. Proliferation of BGC-823 cells was evaluated by MTT assay. Transwell assay and wound healing assay were used to observe the invasion and migration ability of BCG823 cells, respectively. Results: With interfering ZEB2 expression, miR-200c expression level increased while proliferation, migration and invasion ability of BGC823 cells decreased significantly. Conclusions: ZEB2 may be the target of miR-200c, and the ability of BGC823 cells including proliferation, migration and invasion is significantly decreased after interference with ZEB2.

参考文献

[1] Kim SS, Ruiz VE, Carroll JD, Moss SF. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma[J]. Cancer Lett, 2011, 305(2):228-238.
[2] Yang L, Zheng R, Wang N, et al. Incidence and mortality of stomach cancer in China[J]. Chin J Cancer Res, 2018, 30(3):291-298.
[3] Niinuma T, Suzuki H, Nojima M, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors[J]. Cancer Res, 2012, 72(5):1126-1136.
[4] Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5):871-890.
[5] Mani SA, Guo WJ, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell, 2008, 133(4):704-715.
[6] Ishibashi M, Kogo R, Shibata K, et al. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma[J]. Oncol Rep, 2013, 29(3):946-950.
[7] Wang J, Chen D, He X, et al. Downregulated lincRNA HOTAIR expression in ovarian cancer stem cells decreases its tumorgeniesis and metastasis by inhibiting epithelial-mesenchymal transition[J]. Cancer Cell Int, 2015, 15:24.
[8] Christoffersen NR, Silahtaroglu A, Orom UA, et al. miR-200b mediates post-transcriptional repression of ZFHX1B[J]. RNA, 2007, 13(8):1172-1178.
[9] Hurteau GJ, Carlson JA, Spivack SD, et al. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin[J]. Cancer Res, 2007, 67(17):7972-7976.
[10] Park SM, Gaur AB, Lengyel E, et al. The miR200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J]. Genes Dev, 2008, 22(7):894-907.
[11] Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nat Cell Biol, 2008, 10(5):593-601.
[12] Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2[J]. J Biol Chem, 2008, 283(22):14910-14914.
[13] Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop—A motor of cellular plasticity in development and cancer?[J] EMBO Rep, 2010, 11(9):670-677.
[14] Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep, 2008, 9(6):582-589.
[15] Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1- SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition[J]. Cancer Res, 2008, 68(19):7846-7854.
[16] Olson P, Lu J, Zhang H, et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer[J]. Genes Dev, 2009, 23(18):2152-2165.
[17] Korpal M, Ell BJ, Buffa FM, et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization[J]. Nat Med, 2011, 17(9):1101-1108.
[18] Fanelli MF, Chinen LT Sr, Begnami MD, et al. The influence of CD44v6, TGF-α, COX-2, MMP-7, and MMP-9 on clinical evolution of patients with gastric cancer[J]. J Clin Oncol, 2011, 29(4 Suppl):21.
[19] Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer[J]. Int J Cancer, 2013, 132(4):745-754.
[20] Liu S, Tetzlaff MT, Cui R, et al. miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1[J]. Am J Pathol, 2012, 181(5):1823-1835.
[21] Okugawa Y, Toiyama Y, Hur K, et al. Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis[J]. Carcinogenesis, 2014, 35(12):2731-2739.
[22] Kurashige J, Mima K, Sawada G, et al. Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer[J]. Carcinogenesis, 2015, 36(1):133-141.
[23] Sundararajan V, Gengenbacher N, Stemmler MP, et al. The ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5[J]. Oncotarget, 2015, 6(29):27083-27096.
[24] Fanelli MF, Chinen LT Sr, Begnami MD, et al. The influence of CD44v6, TGF-α, COX-2, MMP-7, and MMP-9 on clinical evolution of patients with gastric cancer[J]. J Clin Oncol, 2011, 29(4_suppl):21.
[25] Hur H, Kim JY, Kim YB, et al. Effect of Helicobacter pylori on prognosis of curatively resected gastric cancers in a population with high prevalence: short-term results of a prospective study[J]. J Clin Oncol, 2011, 29(4 Suppl):152b.
[26] Corso G, Marrelli D, Pascale V, et al. Oncogenic mutations in MAPK cascade as novel molecular biomarkers for treatment of gastric cancer patients with EGFR inhibitors[J]. J Clin Oncol, 2011, 29(4_suppl):39.
[27] Noormohammad M, Sadeghi S, Tabatabaeian H, et al. Upregulation of miR-222 in both Helicobacter pylori-infected and noninfected gastric cancer patients[J]. J Genet, 2016, 95(4):991-995.
[28] Shamsdin SA, Alborzi A, Rasouli M, et al. The importance of TH22 and TC22 cells in the pathogenesis of Helicobacter pylori-associated gastric diseases[J/OL]. [2016-12-19]. https://pubmed.ncbi.nlm.nih.gov/27990709/.
文章导航

/